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Abstract: If reinforced concrete structures are to be safe under extreme impulsive loadings such as 
explosions, a broad understanding of the fracture mechanics of concrete under such events is 
needed. Most buildings and infrastructures which are likely to be subjected to terrorist attacks are 
borne by a reinforced concrete (RC) structure. Up to some years ago, the traditional method used to 
study the ability of RC structures to withstand explosions consisted on a choice between handmade 
calculations, affordable but inaccurate and unreliable, and full scale experimental tests involving 
explosions, expensive and not available for many civil institutions. In this context, during the last 
years numerical simulations have arisen as the most effective method to analyze structures under 
such events. However, for accurate numerical simulations, reliable constitutive models are needed. 
Assuming that failure of concrete elements subjected to blast is primarily governed by the tensile 
behavior, a constitutive model has been built that accounts only for failure under tension while it 
behaves as elastic without failure under compression. Failure under tension is based on the 
Cohesive Crack Model. Moreover, the constitutive model has been used to simulate the 
experimental structural response of reinforced concrete slabs subjected to blast. The results of the 
numerical simulations with the aforementioned constitutive model show its ability of representing 
accurately the structural response of the RC elements under study. The simplicity of the model, 
which does not account for failure under compression, as already mentioned, confirms that the 
ability of reinforced concrete structures to withstand blast loads is primarily governed by tensile 
strength. 
 

1 INTRODUCTION 
Blast and other impulsive or highly 

dynamic loading of reinforced concrete 
structures, although being infrequent, have 
proven to be possible due to different 
accidental or intentional events. For this 
reason, the design of buildings and other 
structures under blast loading has received 
considerable attention from the community of 
technicians within the last years. 

However, engineers facing the design of 
reinforced concrete structures able to 

withstand explosions have to rely on 
documents and manuals [1-4] that only 
provide recommendations and general 
indications, or rather on their experience and 
know-how. 

From the calculation point of view, the 
simplest approach is the equivalent static load 
method [5], in which a static load equivalent to 
the explosive event is calculated and then 
applied on the structure as any other loading 
case. 

The advantage of this method is that it is 
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based on static calculation, which is the most 
common methodology used by structural 
engineers. Its main drawback is that it is an 
excessively simplified approach in which 
some major factors such as the inertia or the 
time of response of the structure are not taken 
into account. 

One step forward is the development of 
single degree-of-freedom systems, as 
recommended in the TM5-1300 manual from 
the US Army [3]. The structure is to be 
modeled as a single dof system of equivalents 
mass and stiffness. The maximum response of 
the system can be estimated using elastic-
plastic response spectra, see [6-8]. With this 
approach inertial and strain rate effects can be 
taken into account. However, the structure is 
considered to respond global and 
simultaneously to the blast action and for this 
reason local failures of structural elements are 
not accounted for. This is also a major issue, 
since experience shows that local failure in 
some structural elements can lead to 
progressive collapse of the structure, with 
catastrophic consequences for its occupants 
[9]. 

A more realistic and detailed approach to 
the structural response can be obtained (i) by 
full scale testing of structures subjected to 
blast or (ii) through numerical simulation of 
structures loaded under blast events. 

Full scale testing of reinforced concrete 
structures is expensive and often not available 
due to lack of permission for explosive 
handling and for accessing to proper tests 
fields. Furthermore, the design of structures 
under blast via trial and error through full scale 
detonations would require building and 
detonating as many structures as load cases 
were considered in the design. Anyway some 
full scale detonation tests can be found in the 
scientific literature [10-17]. 

The numerical simulation approach has 
been historically limited by the computing 
power available. However, during the last 
years this lack of computer power is being 
overcome and finite element analyses arise as 
the most suitable and promising method for 
the design of reinforced concrete structures 
under impulsive events. However, in order to 

get representative numerical results, reliable 
constitutive models for the materials involved 
are necessary. There is a broad variety of 
constitutive models for concrete under high 
strain rates [18-22] but most of them have 
never been properly validated through 
comparison with experimental explosive tests. 
Moreover, many of them have been developed 
and validated for their use in the simulation of 
ballistic penetration events in which the 
compressive behavior of concrete is of the 
greater importance. In these models the tensile 
failure criterion and crack development 
formulation are often modeled in a rather 
simple manner, since they play a minor role in 
penetration events, which seems not to be the 
case of blast loading [14-17, 23].  

In this research a novel constitutive model 
for concrete subjected to high strain rates is 
developed. The model has been programmed 
as a material user subroutine for the LS-
DYNA numerical code, and has been validated 
through comparison with an experimental 
program previously developed by the authors 
[23]. 

The constitutive model is an adaptation of 
the Strong Discontinuity Approach based 
model presented in [24, 25] to explicit 
calculations. It is strain rate sensitive and has 
been applied to hexaedric single integration 
point finite elements. These characteristics 
make it especially suitable for structural 
concrete elements where dynamic failure is 
governed by a complex tensile cracking 
pattern. 

2 NUMERICAL MODEL 

The constitutive model can be briefly 
described as a model with no failure under 
compression (behavior linear-elastic in the 
compressive domain), while failure in tension 
is modeled trough the Cohesive Crack Model 
once a threshold value for the maximum 
principal stress is exceeded. The cohesive 
crack is inserted in the finite elements through 
the Embedded Crack Approach (or Strong 
Discontinuity Approach).  
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2.1 The Cohesive Crack Model 
Concrete is a quasi-brittle material that can 

be roughly considered as linear elastic under 
mode I (pure tension) loading until it reaches 
its tensile strength. When the tensile strength is 
exceeded, damage appears in the material and 
the stresses that it can withstand are 
progressively reduced. According to the 
Cohesive Crack Model, or Fictitious Crack 
Model [26] damage is assumed to concentrate 
in a discontinuity line, and it is governed by a 
relationship between the crack opening, w, and 
the mode I stress transmitted across the crack 
sides through a certain mathematical function 
( )wf , called softening curve (figure 1). An 

extensive review of this model can be found in 
[27]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Softening curve. 

To generalize to 3D mixed mode crack 
opening the abovementioned mode I behavior, 
a central force model has been used as in [24]. 
According to this central forces model, it is 
assumed that the traction vector t between 
crack borders is parallel to the crack 
displacement vector w, see figure 2. Therefore, 
the expression of the traction vector reads: 

 
( ) wt ⋅=
w
wf

~
~

  (1) 

 
Being ( )wmax~ =w  an equivalent crack 

opening value defined as the maximum 
registered opening in the crack and ( )wf ~  the 
softening function that relates the stress across 
the crack with crack opening. 

In the absence of specific tests to determine 
the precise shape of the softening curve, the 
exponential one [27] has been chosen for the 
simulations presented here, although linear and 
bilinear approximations have been also 
implemented in the model. The exponential 
approach is thought to be a good option for 
both its simplicity and the continuity of its 
derivatives. According to expression (1), 
unloading-reloading is assumed to follow a 
linear path, as shown in figure 1. 

 

 
 

Figure 2: Central forces model. 

2.2 The embedded crack approach 
Equation (1) provides the traction vector t 

acting between both sides of the crack. 
However, in order to apply such traction, a 
crack must be first inserted somehow in the 
mesh. Such issue has been addressed by means 
of the embedded crack approach [24, 25, 28-
30]. 

The kinematics describing a strong 
discontinuity, such as a crack, embedded on 
finite elements can be obtained by decoupling 
the displacement field into a continuous and a 
discontinuous part. In this decoupling the 
discontinuous part lumps the additional 
degrees of freedom related with the 
discontinuity, namely opening and sliding, 
which are incorporated through the 
displacement jump vector, w. 

Let us consider a quite general finite 
element like the one depicted in figure 3. The 
element is crossed by a crack which divides it 
into the A- and A+ regions, as shown in the 

w

t

t

w

σ

f(w)
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figure. The crack orientation is defined by the 
n vector, which is the unitary vector normal to 
the crack line. The jump in displacements is 
given by the w vector, which will be enforced 
to have a constant value along the crack 
embedded in the element. According to [31] 
the equation that describes the displacement 
field in the element under these conditions is 
given by: 
 

( ) ( ) ( ) ( ) wxxuxxu α ⋅⎥
⎦

⎤
⎢
⎣

⎡
−+⋅= ∑∑

+∈∈ AA

NHN
α

α
α

α  (3) 

 
Where α is the node index, Nα(x) is the 

shape function associated to node α, uα is the 
corresponding nodal displacement vector, w is 
the displacement jump vector and H(x) is the 
Heaviside function (H(x) = 0 if xא A- ; H(x) = 
1 if xא A+). 

 
(a) 

 
 
 
 
 
 
 
 

(b) 
Figure 3: Arbitrary finite element with (a) 
discontinuity line and (b) displacement 
jump through the discontinuity line. 

The strain tensor can be obtained from the 
displacement field by taking the symmetric 
gradient to eqn. (3), leading to: 
 

( ) ( )[ ] ( )
S

AA

S

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⊗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⊗= ∑∑

+∈∈

wxbuxbxε α
c

α
α

α
α  (4) 

, where ( ) ( )xgradxb αα N= . In eqn. (4) the 
first term represents the strain field that would 

have the element if no displacement 
discontinuity were present on it, given that for 
this term the strain field is obtained from 
taking the derivative to the shape functions 
directly applied to the nodal displacements. 
For that reason, from now on we will name: 

 
( ) ( )[ ]∑

∈

⊗=
A

S

α
α α

a uxbxε   (5) 

 
, in which the superscript a stands for 

apparent. The second term in eqn. (4) 
represents the amount that must be subtracted 
to the apparent strains in order to take into 
account for the presence of the crack. For the 
sake of simplicity, we will adopt the following 
notation:  

( ) ( )∑
+∈

+ =
Aα

α xbxb   (6) 

 
Therefore, the b+ vector is obtained as the 

sum of the gradients of the shape functions 
corresponding to the nodes belonging to the 
A+ region. From now on, these nodes will be 
referred to as solitary nodes. Consequently, the 
choice of the solitary nodes becomes a key 
issue in the formulation of the embedded crack 
model, since they determine the kinematics of 
the model. By substituting eqns. (5) and (6) in 
(4), we obtain: 

 
( ) ( ) [ ]Sw(x)bxεxε ac ⊗−= +   (7) 

 

2.3 Initiation and orientation of the crack 
Maximum principal stress is used to obtain 

both the crack initiation and the crack 
orientation. Once the maximum principal 
stress overcomes the tensile strength, a crack is 
introduced perpendicular to the direction of the 
former. Therefore the crack orientation n is 
computed as the unit eigenvector associated to 
such maximum principal stress. In principle, 
for a given element, there should be as many 
principal stress directions as integration points 
were present in the element. This issue is 
circumvented by applying this methodology 
only to constant stress elements, as made 
earlier by [24, 25, 28-30]. For the model 

n

w

w

n
A-

A+
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developed here, 3D hexahedral single 
integration point elements have been used. 

However, by setting the crack direction the 
problem of deciding which are the solitary 
nodes is not solved. Figure 4 shows some of 
the possible solitary nodes combinations for a 
given crack direction associated to a certain n 
vector. 

Among all the possible combinations of 
solitary nodes and, subsequently of possible b+ 
vectors, in this work similarly to [24, 32] the 
solitary nodes are determined by requiring that 
the angle between vectors n and b+ is the 
smallest possible: 

 

max=
⋅
+

+

b
bn  (8) 

 
All this procedure of calculating n and b+ 

takes place locally every time a finite element 
exceeds the maximum principal stress criterion 
and no crack continuity is enforced between 
adjacent elements. At first stages of the crack 
development, stress waves in the material may 
cause an element to crack on a different 
direction of the adjacent element pre-existing 
crack, thus producing an undesirable crack 
locking effect. To avoid this problem without 
introducing crack continuity algorithms, the 
concept of crack adaptation, firstly introduced 
by [24], is adopted here. 

This approach allows the crack to adapt 
itself to later variations of its principal stress 
direction while its opening does not overcome 
a certain threshold value. Once such value is 
exceeded, the crack direction is frozen. For the 
simulations presented here, the value of 
wadapt=0.1GF/ft has been chosen, being wadapt 
the threshold crack opening value, GF the 
specific fracture energy, and ft the tensile 
strength. 

 

 

 

 
Figure 4: Examples of some of the different 
solitary  nodes  combinations  for  a  unique 
crack orientation when varying its position, 
where the solitary nodes are printed in bold 
letters. 
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The use of hexahedral elements instead of 
tetrahedrons offers two major advantages. First 
of all, the whole element presents more 
possible combinations of solitary nodes and, 
subsequently, more possible b+ vectors to find 
the more parallel one to the n direction, 
following eqn. (8). This fact provides an 
element kinematics more compliant with the 
crack orientation, according to the maximum 
principal stress criterion.  

The second advantage appears when a 
structured mesh is used. Since the b+ vector is 
obtained as the gradient of the shape functions 
corresponding to the solitary nodes, global 
coordinates of these nodes would be required 
to obtain such vector. Many commercial 
explicit codes, such as LS-DYNA or 
AUTODYN, do not allow user programmed 
elements and only material user subroutines 
are available. Unfortunately, nodal coordinates 
are not usually accessible at the material level 
(integration point level). However in case of 
using a structured mesh of hexahedral 
elements, for all the elements present in the 
mesh the eight shape functions of all elements 
are equal eight to eight with the only 
difference of being translated in the XYZ 
space. Since the b+ vector comes from the 
gradient of the shape functions and the spatial 
translation does not affect the result of the 
gradient, all the possible b+ vectors for all 
elements are exactly the same. Then, the only 
required parameters are the lengths of the 
hexahedra sides, which can be input to the 
subroutine as any other material property. This 
strategy makes possible the use of this material 
model in a wide variety of commercial and 
non commercial numerical codes. The only 
price to pay is that nodal positions cannot be 
obviously updated and therefore it is only 
suitable for small displacement analyses. 

2.4 Local equilibrium 

As it has been aforementioned, the material 
behaves as linear elastic until the maximum 
principal stress exceeds the threshold value of 
the tensile strength. At this moment the 
cohesive crack is embedded in the element. 
Since outside the crack the material continues 

behaving linear elastic, we can obtain the 
stress tensor by applying: 
 

cεDσ ⋅=   (9) 
 

, being D the elastic moduli fourth order 
tensor. By substituting cε  by its value 
according to eqn. (7), now it reads: 
 

[ ]SwbεDσ a ⊗−⋅= +
  (10) 

 
The previous expression provides Cauchy's 

stress tensor in the continuum part of the 
element. However the traction vector acting 
along the crack sides must satisfy local 
equilibrium with the abovementioned stress 
tensor. In other words, the traction vector 
corresponding to the n direction applied to 
Cauchy's tensor of the continuum must be 
equal to the crack's traction vector: 

 
( ) wtcrack ⋅=
w
wf

~
~

  (11) 

( ) [ ] nwbDεDnεDt ac
continuum ⋅⎥⎦

⎤
⎢⎣
⎡ ⊗⋅−⋅=⋅⋅= + S

 (12) 

→= continuumcrack tt  
( ) [ ][ ] nwbεDw a ⋅⊗−⋅=⋅→ + S

w
wf

~
~

        
(13) 

 
Equation (13) is the basic equation 

governing the cohesive embedded crack 
formulation. In the equation, the only 
unknown is the crack displacements vector, w, 
and must be solved by numerical methods. 

2.5 Rate effects 
In a reinforced concrete element subjected 

to a blast event, the load is applied at a very 
high strain rate, within the order of 10 s-1 to 
1000 s-1 [33, 34]. While the mechanical 
properties of almost all materials are strain rate 
sensitive, the effect of high strain rates is 
particularly remarkable in the case of concrete. 

The most usual way of taking into account 
the effect of strain rates is through the 
Dynamic Increase Factor (DIF), which is 
obtained as the ratio between the dynamic and 
the static strength. The DIF is normally 
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defined for the compressive strength and the 
tensile strength [34-36]. 

Some attempts have been also made to 
obtain the DIF for the fracture energy of 
concrete [37-39]. Although the experimental 
data are scarce, it seems that the DIF for 
fracture energy is very similar to the DIF for 
the tensile strength. Therefore, in this research 
a multiplicative formulation has been used to 
take into account for rate effects. It consists on 
multiplying the whole softening curve by the 
DIF, as shown in figure 5. As a result, both the 
tensile strength and the fracture energy are 
simultaneously increased by the same factor, 
in line with the experimental results obtained 
by [38]. The expression of the DIF applied in 
this research is the one provided for the tensile 
strength by the CEB Bulletin 187 [35]: 

 
α

ε
ε

016.1

0
⎥
⎦

⎤
⎢
⎣

⎡
==

&

&

ts

td

f
fDIF for 

130 −≤ sε&  (16) 
3
1

εη &⋅==
ts

td

f
fDIF     for 

130 −> sε&  
 

 

Where  
tsf⋅+

=

2
110

1δ  and 492.0933.610 −⋅= δη , 

ftd and fts are the dynamic and static tensile 
strengths of concrete, respectively, fcs is the 
static compressive strength of concrete, fc0 is a 
reference value equal to 10 MPa, ε& is the 
actual strain rate and Sε&  is the static strain 
rate, which is taken as 10-6 s-1. 

3 EXPERIMENTAL RESULTS 
The experimental program developed by 

the authors used to validate the model 
consisted of open air detonations over 
reinforced concrete square slabs simply 
supported on their four corners. Two different 
grades of concrete were tested: normal 
strength concrete (NSC) and high strength 
concrete (HSC). With each detonation, the test 
setup allowed to test three slabs 

simultaneously, placed at 1.50 m from the 
explosive charge. Two detonations of 5 kg 
TNT equivalent were performed for each 
concrete grade, which represents a total of 6 
plates of each kind concrete, all them 
subjected to the same explosive load. The 
geometry of the plates is provided in figure 6. 
Compressive strength of both concretes, 
measured according to the EHE 08 Spanish 
concrete structural code [40] at the age of the 
tests is given in table 1. 

 
 
 
 
 
 
 
 
 
 

 

Figure  5: Exponential softening function 
original and enhanced due to strain rate. 

Table 1: Evolution of concrete strength 

Age 
[days] 

NSC 
fck 

[MPa] 

NSC 
fck 

[MPa] 
28 49.81 91.07 

 
As shown in figure 6, slabs were reinforced 

on their back side with a steel mesh of bars of 
6 mm diameter of steel grade B 500 S, spaced 
150 mm in both directions. For further details 
about the experimental campaign, the reader is 
addressed to [23]. 

The test setup did not allow measuring 
neither loads nor displacements, and its main 
purpose was to study the differences on failure 
and crack patterns between both kinds of 
concretes given that they were subjected to the 
same explosive charge.  

Although the slabs showed experimental 
scattering on their cracking pattern and 
damage level, two different modes of cracks 
were clearly observed after the tests: a shear 
failure mode, depicted by the circular-like 

Static
Dynamic

St
re

ss

Crack width opening

f(w)· DIF

f(w)
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cracks surrounding the supports, and a bending 
failure mode represented by cracks parallel to 
the sides of the slabs. These crack modes are 
shown in figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  6: Test specimen geometry and 
reinforcement details (dimensions in mm). 

When comparing the behavior of the two 
different grades of concrete, it was noted that 
although in principle all slabs failed with 
multiple cracks going through their thickness, 
the dominant cracking mode in the case of 
normal strength concrete was the shear one, 
while in the case of the high strength concrete 
bending mode cracks were more remarkable. 

From a simple theoretical analysis based on 
the yield line method, a slab supported on its 
four corners and subjected to a uniformly 
distributed static load should fail under pure-
bending mode. However, the experimental 
results obtained in the abovementioned 
campaign demonstrate that the loading rate can 
change the failure mode of a structural 
concrete element. Moreover, the change in the 
failure mode is not only dependent on the 
loading rate, but also on the concrete quality. 
Similar results were obtained on an 
experimental campaign performed on 
reinforced concrete beams by [14-15]. 

 

4 NUMERICAL SIMULATION 

4.1 Model setup 
The experimental campaign summarized in 

the previous section was simulated by using 

the model presented in this paper. LS-DYNA 
v.761 explicit finite element code was used for 
such task. Since constant stress hexahedral 
elements were used, it was possible to 
implement the constitutive model at a material 
level, therefore a user subroutine was enough 
to implement it. 

Concrete plates were meshed with 
4x4x4mm one point integration solid (brick) 
elements, resulting in a total of 546000 
elements.  

Steel rebar was modeled through 1500 truss 
elements of 4mm length. Bond between 
concrete and rebar was set through using 
common nodes on steel and concrete meshes, 
which is equivalent to assume perfect bonding 
between concrete and rebar. 

The material parameters input for the 
concrete model are given in table 2.  

Steel rebar was modeled using a elastic-
plastic material model, with the parameters 
given in table 3. 

 
Table 2: Mechanical properties for concrete 

 NSC HSC 
Density [kg/m3] 2400 2400 

Elasticity modulus [MPa] 38600 46200
Poisson’s ratio [-] 0.2 0.2 

Static tensile strength* 
[MPa] 

4.1 6.1 

Static fracture energy* 
[N/m] 

123.4 187.7 

Static compressive 
strength** [MPa] 

49.8 91.0 

* Values estimated according to the CEB-FIP Model Code 
[4] 

**Compressive strength is only necessary to take into 
account rate effects, according to eqn. (16). 

 
Table 3: Mechanical properties for steel 

Density [kg/m3] 7850 
Elasticity modulus [MPa] 205000 

Yield stress [MPa] 500.0 
Poisson’s ratio [-] 0.30 
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Figure 7: Slabs after detonation tests with highlighted cracks (bending cracks in purple, shear cracks on red). 

Loading of slabs was imposed by applying 
directly the reflected pressure–time history 
that was measured by piezoelectric pressure 
gauges during the tests [23]. 

In order to get a better representation of the 
crack patterns in the simulations, the crack 
visibility parameter has been defined. The 
minimum visible crack is around 0.1 and 0.2 
mm, therefore crack openings below this 
threshold would not be visible by naked eye. 
Then, we have defined crack visibility as the 
integer part of the division of the norm of the 
crack opening vector, |w|, over the minimum 
visible crack width (0.15 mm has been used in 
these simulations). Therefore, a crack opening 
below the minimum visible crack threshold 
would result in a crack visibility value of 0, 
while for example a crack opening of 0.48 
would result in a value of 3 in this case. 

Figure 9 shows the crack visibility patterns 
obtained after 5ms of simulation, when the 
loading process has been finished and the 
plates have been fully unloaded. It can be 
observed how the model succeeds in catching 
the different failure patterns between both 
concretes. 

The reason for such different cracking 
patterns between both concrete grades appears 

to be that crack initiation takes place at the 
first moments of stress wave propagation 
within the concrete. The shock wave impact on 
the slab generates tensile stress waves in the 
material that travel from the supports to the 
center of the slab.  These tensile stress waves 
are of the same magnitude in both concrete 
types, but the ability to withstand them is 
greater in HSC, due to its greater tensile 
strength. For this reason, as tensile strength of 
NSC does not suffice to withstand the tensile 
stress waves, the material fails near the 
supports. Nevertheless, on HSC these waves 
also cause failure of the concrete near the 
supports, but on a much smaller extent. 
Therefore, the stress waves can propagate 
further on the HSC slabs, reaching the center 
span of the slab, where they cause a greater 
damage. 

Later on the inertial effects on both NSC 
and HSC slabs make the cracks develop, being 
the increase of width opening greater on the 
cracks where the original damage was 
originally bigger, that is, near the supports on 
NSC slabs and on center span on HSC slabs. 

As in the experimental campaign, numerical 
simulations also show how in the two kinds of 
concrete grades both shear and bending cracks 
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are however present but always one type of 
crack is dominant, making the other one 
difficult to be seen by naked eye. 

The numerical simulations have also been 
able to represent the fact that after the tests the 
shear cracks on NSC slabs showed a greater 
width than the ones in HSC, see figure 8. 

5 CONCLUSIONS 
A new material model for concrete 

subjected to blast and explosions has been 
developed. The model is based on the 
embedded crack approach in conjunction with 
the cohesive crack concept. Strain rate effects 
are taken into account following a 
multiplicative approach by using the Dynamic 
Increase Factor (DIF) applied to the tensile 
strength and subsequently to fracture energy. 

The model has been developed for constant 
stress hexahedral elements. This has made 
possible to program it at a material level, 
avoiding the need of enquiring the nodal 
coordinates for the b+ vector calculation, 
making easier to implement it in a commercial 
finite element explicit code, such as LS-
DYNA. 

An experimental campaign previously 
developed by the authors on reinforced 
concrete slabs of two different concrete grades 
has been used to validate the model. The 
numerical simulations have shown its 
capability on reproducing the predominant 
crack paths and failure patterns with good 
accuracy level. 

Numerical simulations, besides 
experimental results, show how both, the high 
strain rates and the concrete tensile strength, 
influence the crack patterns and the failure 
modes of concrete structural elements. This 
issue is remarkably important, since shear 
failure usually lead to less ductile behavior and 
must be avoided as much as possible by 
structural engineers. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
                NSC (t=5 ms) 
 
 
 
 
 
 
 
 
 
 
 
 
                HSC (t=5 ms) 

Figure 8: Crack visibility contours. 
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