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Abstract. The contribution employs meso-level discrete numerical model to approximate mechan-
ics of concrete failure. The model represents the material by assembly of rigid-like particles inter-
connected by nonlinear bonds with strain softening. Spatial material randomness is introduced by
varying the local meso-level strengths and fracture energies of inter-particle bonds. The variations
are modeled using realizations of stationary autocorrelated random field and studied for two different
correlation lengths. The study is focused on maximal load and energy dissipation during the progres-
sive failure. It is found that material fluctuations in notched beams do not influence the mean values
of maximal load and dissipated energy, but they influence their variance. In the case of unnotched
beams, the mean of maximal load decreases with decreasing correlation length of material properties;
however, the coefficient of variation of the peak load increases.

1 INTRODUCTION

It has been widely recognized that the me-
chanical properties of materials exhibit spa-
tial variability. The seminal theory of Weibull
[27] offered simple and powerful tool to deter-
mine the probabilistic distribution of structural
strength. However, applicability of the Weibull
theory is limited to brittle structures with no
stress redistribution prior to the peak load. The
Weibull theory lacks any material length scale
and the rupture of an infinitely small volume
directly causes the failure of the whole struc-
ture. The absence of any characteristic length
scale also results in spurious infinite strength
of infinitely small structures [3, 24]. Moreover,
the Weibull theory assumes that the strength at
every material point is independent of its sur-

roundings. However, many structures are made
of quasibrittle materials such as concrete, ce-
ramics, rock or ice. These structures have the
ability to partially redistribute the stresses and
thus their failure is triggered by the rupture
of some representative volume of a finite size.
Also the Weibull assumption of independence
stands out against the natural expectation that
the local strength fluctuates rather continuously
inside the structure.

The advantage of Weibull theory comes from
the fact that the mechanics of failure do not in-
teract with the stochastic model—only the elas-
tic stress field is needed. Extension of the
Weibull theory for finite internal material length
scale requires knowledge of the stress redistri-
bution prior to the peak load. The redistribu-
tion can be mimicked by the nonlocal Weibull

1
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theory of Bažant and Xi [8] and Bažant and
Novák [5], where probability of failure of ma-
terial point depends not only on its local stress
but also on the stresses in its neighborhood.
Therefore, the local stress is replaced by a non-
local stress obtained by nonlocal averaging of
the (local) elastic stress field [4]. The nonlo-
cal Weibull theory agrees for the large sizes
with the local one. For intermediate structural
sizes, it predicts higher strengths than the lo-
cal Weibull theory by virtue of stress redistribu-
tion. Unfortunately, in the in the case of very
small structures, the theory is not applicable be-
cause the approximation of stress redistribution
by nonlocal averaging is too simplistic. Al-
though the nonlocal averaging helps to intro-
duce the material internal length, it is unable to
take correctly into account possible spatial cor-
relations of the local material properties.

A laborious option of structural strength esti-
mation is represented by stochastic failure sim-
ulations that include proper mechanics of stress
redistribution. Such a stochastic analysis can
be performed using the finite element method
with a sophisticated material constitutive law
[26]. The failure of highly heterogeneous ma-
terials can also be advantageously estimated
via discrete models. These models can be de-
terministic: Bolander and Saito [9], Van Mier
and Van Vliet [21] or stochastic: Alava et al.
[1], Grassl and Bažant [14]. This study adopts
the lattice-particle model developed at North-
western University by G. Cusatis et al. [10, 11]
to model the distributed fracturing of concrete.
Spatial fluctuations are introduced by modeling
the material properties as realizations of a ran-
dom field.

The following Section 2 briefly describes
the deterministic mechanical (lattice-particle)
model and Section 3 elucidates how the spa-
tial randomness is incorporated into the model.
The model is then used in numerical simula-
tions of failure of notched and unnotched three-
point bend beams. The results are presented in
Sections 4 (notched beams) and 5 (unnotched
beams).

2 DETERMINISTIC MODEL
Modeling of the initiation and propagation

of cracks in quasibrittle materials exhibiting
strain softening has been studied for several
decades. Although this is a difficult task com-
plicated by the distributed damage dissipating
energy within a fracture process zone (FPZ) of
non-negligible size, realistic results have been
achieved by several different approaches; see
e.g. Bažant and Planas [7]. The present study
is based on the cohesive crack model [2, 7, 16],
called sometimes the fictitious crack model. It
relies on the assumption that the cohesive stress
transmitted across the crack is released gradu-
ally as a decreasing function of the crack open-
ing, called the cohesive softening curve. Its
main characteristic is the total fracture energy,
GF—a material constant representing the area
under the softening cohesive stress-separation
curve.

In heterogeneous materials, the dissipation
of energy takes place within numerous meso-
level cracks inside the FPZ. Direct modeling
of such distributed cracking calls for represen-
tation of the meso-level structure of material.
Models capable of efficiently incorporating the
concrete meso-structure should be used. For
this purpose, the present analysis will be based
on the discrete lattice-particle model developed
by Cusatis and Cedolin [12], which is an exten-
sion of Cusatis et al. [10, 11].

The material is represented by a discrete
three-dimensional assembly of rigid cells. The
cells are created by tessellation according to
pseudo-random locations and radii of computer
generated aggregate pieces or particles. Every
cell contains one aggregate (Fig. 1a,b). The
cells are interconnected by a set of three non-
linear springs (one normal, n, and two tangen-
tial, t1, t2). These are placed at the interfaces
between the cells, representing the mineral ag-
gregates in concrete and its surroundings. On
the level of rigid cell connection, the cohesive
crack model is used to represent cracking in the
matrix between the adjacent grains. The inter-
particle fracturing is assumed to be of damage-
mechanics type and is modeled using a single
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Figure 1: a) One cell of the lattice-particle model and b) its section revealing the aggregate. c) Geometry of the beams
simulated in three-point-bending.

damage variable ω applied to all three directions
i = n, t1 and t2. Forces Fi in the springs can
thus be evaluated from their extensions ∆ui by

Fi = (1− ω)ki∆ui (1)

where ki is elastic spring stiffness. The damage
parameter ω depends on ∆ui and on the pre-
vious loading history of each connection. For
a detailed description of the connection, the
constitutive law and other model features, see
Cusatis and Cedolin [12]. The confinement ef-
fect (present in the full version of the model) is
neglected here because it was estimated to play
no important role in the type of experiments
studied here.

Beams of depths D = 300 mm, span-depth
ratio S/D = 2.4 and thickness t = 0.04 m,
were modeled. The maximum aggregate diam-
eter was 9.5 mm. The minimal grain diameter
was selected as 3 mm. The aggregate diam-
eters within the chosen range were generated
using the Fuller curve. The parameters of the
constitutive law of the connection were taken
to be similar to those in Cusatis and Cedolin
[12], and were as follows: matrix elastic mod-
ulus Ec = 30 GPa; aggregate elastic modu-
lus Ea = 90 GPa; meso-level tensile strength
σt = 2.7 MPa; meso-level tensile fracture en-
ergy Gt = 30 N/m; meso-level shear strength
σs = 3σt = 8.1 MPa; meso-level shear fracture
energy Gs = 480 N/m; meso-level compres-
sive strength σc = 42.3 MPa; Kc = 7.8 GPa;
α = 0.25; β = 1; µ = 0.2; nc = 2.

To save computer time, the lattice-particle
model covers only the region in which crack-
ing was expected. The surrounding regions of

the beams were assumed to remain linear elastic
and were therefore modeled by standard 8-node
isoparametric finite elements. The elastic con-
stants for these elements were identified by op-
timal fitting of a displacement field with homo-
geneous strain to the displacements of particle
system subjected to low-level uniaxial compres-
sion. The macroscopic Young’s modulus and
Poisson ratio were found to equal Ē = 34.7 GPa
and ν̄ = 0.19. The finite element mesh was
connected to the system of particles by intro-
ducing interface nodes treated as auxiliary zero-
diameter particles [13]. These auxiliary parti-
cles have their translational degrees of freedom
prescribed by shape (or interpolation) functions
of the nearest finite element. The rotations of
the auxiliary particles were unconstrained.

3 STOCHASTIC MODEL

In the present discrete model, the material
properties are assigned at each inter-particle
connection according to a stationary autocorre-
lated random field. The value of the c-th real-
ization of the discretized field at spatial coor-
dinate x is denoted Hc(x). For a given coor-
dinate x0, H(x0) is a random variable H of
cumulative distribution function (cdf) FH(h).
Since random fields considered are stationary,
the cdf FH(h) is identical for any position x0.
The recent studies by Bažant and co-workers
[6, 18, 19] showed that, when H represents the
strength of a quasibrittle material, FH(h) can be
approximated by a Gaussian distribution onto
which a power-law tail is grafted from the left
at a probability of about 10−4–10−3;
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FH(h) =


rf

(
1− e−〈h/s1〉

m
)

0 ≤ h ≤ hgr (2a)

FH(hgr) +
rf

δG
√

2π

∫ h

hgr

e−(h−µG)2/2δ2Gdh h > hgr (2b)

where 〈x〉 = max(x, 0), s1 = s0r
1/m
f , m is

the Weibull modulus (shape parameter) and s0
is scale parameter of the Weibull tail, µG and
δG are the mean value and the standard devia-
tion of the Gaussian distribution that describes
the Gaussian core. The Weibull-Gauss juncture
at point at hgr requires that (dFH/dh)|h+gr =

(dFH/dh)|h−gr; here rf is a scaling parameter
normalizing the distribution to satisfy the con-
dition FH(∞) = 1. The distribution has 4 inde-
pendent parameters in total.

The spatial fluctuation of the field is charac-
terized through an autocorrelation function. It
determines the spatial dependence pattern be-
tween the random variables at any pair of nodes.
The correlation coefficient ρij between two field
variables at coordinates xi and xj can be as-
sumed to obey the squared exponential func-
tion:

ρij = exp

[
−
(
‖xi − xj‖

d

)2
]

(3)

It introduces a new parameter d called the auto-
correlation length.

To digitally simulate the stationary ran-
dom field described by the cdf of random
variable FH and the correlation length d
in the discrete model, one needs to gen-
erate N realizations of the discretized ran-
dom fieldH0(x), H1(x), . . . , HN−1(x) at the
facet centers of the model. This is achieved
using the Karhunen–Loève expansion based on
the spectral decomposition of covariance matrix
C, where Cij = ρij . This procedure decom-
poses the correlated Gaussian variables Ĥ(xi)
into independent standard Gaussian variables
ξk, which are easy to generate. The c−th real-
ization of the Gaussian random field Ĥ

c
(x) is

then obtained using K standard Gaussian ran-

dom variables with the following expression

Ĥ
c
(x) =

K∑
k=1

√
λkξ

c
kψk(x) (4)

Here λ and ψ are the eigenvalues and eigenvec-
tors of the covariance matrix C, and K is the
number of eigenmodes or variables considered.
In practice, it suffices to employ only a reduced
number of eigenmodes K � order of C. In
particular, K can be selected such that

∑K
k=1 λk

corresponds to about 99% of the trace of the co-
variance matrix C [23]. The vectors of inde-
pendent standard Gaussian variables ξ are gen-
erated by Latin Hypercube Sampling using the
mean value in each subinterval. The spurious
correlation of the variables is then minimized
by reordering their K realizations [25].

A non-Gaussian random field can be gener-
ated by iso-probabilistic transformation of the
underlying Gaussian field, as follows:

Hc(x) = F−1H (Φ(Ĥ
c
(x))) (5)

Such a transformation, however, distorts the
correlation structure of the field. Thus, when
generating Gaussian field Ĥ , the correlation co-
efficients must be modified [23]. This is per-
formed using the approximate method of Hong-
Shuang et al. [17].

The realizations of the random field need to
be evaluated at every (inter-particle bond) of
the mechanical model (at its center). This can
be computationally extremely demanding for a
large number of facets (with a large covariance
matrix) and a short correlation length d (since
many eigenvalues are needed so K is large).
Therefore, the expansion optimal linear estima-
tion method – EOLE [20], is adopted. This
method can significantly reduce the time of ran-
dom field generation. Instead of the facet cen-
ters, the field is initially generated on a regular
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grid of nodes with spacing d/3 (see Fig. 2). The
values of the random field at the facets are then
obtain from the expression

Ĥ
c
(x) =

K∑
k=1

ξck√
λk
ψT
kCxg (6)

where λ and ψ are now the eigenvalues and
eigenvectors of the covariance matrix of the
grid nodes, and Cxg is a covariance matrix be-
tween the facet center at coordinates x and the
grid nodes. After the Gaussian random field
values at facet centers are obtained by EOLE
(Eq. 6), they need to be transformed to the non-
Gaussian space by Eq. 5.

Besides significant time savings, another ad-
vantage of using EOLE is that one can simply
use the same field realization for several differ-
ent granular positions. By keeping the c-th real-
ization of decomposed variables ξc unchanged,
the field realization can be adapted for any con-
figuration of the facets in the discrete model.

The structural strength of a quasibrittle mate-
rial is typically governed by two important ma-
terial properties, namely the material strength
and the fracture energy. Realistic fracture
models should therefore incorporate random
spatial variability of at least these two vari-
ables. It is reasonable to consider the material
strength fully correlated with the fracture en-
ergy [14]. Furthermore, the proposed lattice-
particle model also includes the shear strength
fs and mode-II fracture energy Gs, which are
again assumed to be fully correlated with the
tensile strength ft and mode-I fracture energy
Gt, respectively. Assuming identical coeffi-
cients of variation (cov), we can use the same
realizations of the random field to generate val-
ues of material strengths and fracture energies.
When any of the four aforementioned mechan-
ical properties are substituted for X , one can
write

X(x) = X̄H(x) (7)

where X̄ stands for the mean value of the par-
ticular property. The mean value of the (field)
random variable H must equal 1.

correlation length d = 80 mm

correlation length d = 40 mm

H(x)
0.5 1.81.0 1.5

a) b)

c) d)

Figure 2: Left: one realization of the autocorrelated ran-
dom field H on a grid of spacing d/3 for d = 80 mm
(top) and d = 40 mm (bottom). Right: realization of
the field H at the element centers of the lattice-particle
model.

In this study, the following parameters of
the Weibull-Gauss grafted distribution (Eq. 2a)
are used: m = 24; s1 = 0.486 MPa; hgr =
0.364 MPa; δG = 0.25. These parameters
provide the overall mean value µH=1; stan-
dard deviation δH ≈0.25, and grafting proba-
bility FH(hgr) ≈ 10−3. Two correlation lengths
d were considered: a shorter length d4 =
40 mm (according to Grassl and Bažant [14])
and a longer length d8 = 80 mm (according to
Vořechovský and Sadı́lek [26]). The computa-
tion is performed with N = 24 realizations of
the random field for each correlation length.

4 SIMULATIONS OF BENDING OF
NOTCHED BEAMS

The beams of the first set (depth D =
300 mm, span S = 2.4D, thickness t =
40 mm) for three-point bending were modeled
with a central notch up to 1/6 of beam depth.
Ten deterministic simulations were computed.
These simulations exhibit a certain scatter be-
cause of the pseudo-random granular positions
differing for each realization. For both cor-
relation lengths of 40 and 80 mm, 24 simu-
lations with spatial material randomness were
performed.
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Figure 3: Load-deflection curves for simulations of three-
point-bend beams with notch.

All the simulations were terminated when
the magnitude of the loading force dropped to
1/3 of the maximum load reached, Fmax. To en-
sure numerical stability in the presence of soft-
ening, the simulations were controlled by pre-
scribing an increase of the crack mouth opening
displacement (CMOD) in every step.

The notch present in the model induces
a stress concentration at the notch tip. There-
fore, high stresses occur only in a small area

above the notch tip. Consequently, a crack ini-
tiates and propagates always from the notch tip.
In stochastic calculations with a rather large
correlation length, the local strength fluctua-
tions within the region of high stresses get re-
duced because of the imposed spatial correla-
tion. Thus, the peak load Fmax depends mostly
on a single value of the random field realiza-
tion at the notch tip location. In other words,
a random field a with correlation length greater
than the length-width ratio of the FPZ can, in
the vicinity of the crack tip, be viewed as a ran-
domized constant—the random field becomes a
random variable in that region.

The load-deflection curves obtained are
shown in Fig. 3. The figure also shows the
maximum loads, Fmax, in its upper left corner.
The effect of the spatial strength fluctuations of
the mean value of the maximum load is negli-
gible. The mean value of Fmax is, in the de-
terministic calculation, µd = 11.3 kN and, for
stochastic simulations with d = 40 and 80 mm
µ4 = µ8 = 11.0 kN.

However, the standard deviations of the peak
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Figure 4: Realizations of random field H (left) and corresponding damage patterns developed in bent notched beams at
the peak force (middle) and after the load has dropped to 1/3 of its maximum (right).
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Figure 5: Energy per unit ligament area gd dissipated in notched beams up to a) the maximum load, and b) reference beam
compliance 1/45 mm/kN as a function of the vertical position in the beam.

load are significantly influenced by the material
randomness. The standard deviation of deter-
ministic calculations (given solely by random
aggregate position) is δd = 0.4 kN. A signif-
icant increase in the standard deviation is ob-
served for both the correlation lengths δ4 =
1.5 kN (d = 40 mm), and δ8 = 1.8 kN (d =
80 mm). Since the maximum load of the beam
is controlled by the local meso-level strength of
a small zone above the notch tip, it is concluded
that the fluctuation rate does not influence the
standard deviation (unless it is so small that the
material parameters vary significantly inside the
FPZ).

For several selected realizations, the com-
puted damage patterns (damage parameter ω
from Eq. 1) at the peak load and at the termina-
tion of the simulations are showed in Fig. 4 to-
gether with the corresponding random field re-
alization. Even though one can notice that the
crack is slightly attracted (repelled) by areas of
low (high) strength, the macrocrack trajectory
is similar to the deterministic case (dictated by
the singular stress field).

To compare the energy dissipation in the
beams, we need to ascertain the simulation
stages where the same portion of the ligament
has already been damaged. Therefore, we se-
lect a stage in which the crack lengths, equiv-
alent according to the LEFM, are equal. Thus,
all the models should have at that (reference)
stage the same (reference) compliance, chosen

as 1/45 mm/kN (Fig. 3).
The depth of specimen was divided into hor-

izontal strips of depth s (Fig. 1c). All the en-
ergy dissipated at inter-particle contacts within
a specific strip was summed into variable Gd.
One can normalize that energy by ligament area
as gd = Gd/st. The mean values and stan-
dard deviations of gd are plotted in Fig. 5 for
every strip at the peak load and at the reference
compliance stages. The figure confirms that the
mean energy dissipation in notched tests does
not change when the spatial material random-
ness is applied. Similarly to the peak force be-
havior, standard deviations of dissipated energy
increase when randomness is present.

5 SIMULATIONS OF BENDING OF UN-
NOTCHED BEAMS

The second simulation set focused on the
bending of unnotched beams in which cracks
initiate from a smooth bottom surface. Ten de-
terministic simulations andN = 24 simulations
with random field for each correlation length
were performed. To control the simulation, one
needs to find some monotonically increasing
variable, and here again the CMOD was used.
For unnotched beams with spatially fluctuating
meso-level strength, the location of the macroc-
rack, and thus the position of the crack mouth, is
not known in advance. Therefore, several short
overlapping intervals were monitored simulta-
neously and the controlling CMOD was cho-
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deterministic d = 80 mm d = 40 mm

Figure 6: Points of crack initiation of unnotched beams for various degrees of randomness.

sen to be the maximum one among all of them.
Note that another possible controlling variable
might be the total energy dissipation in the spec-
imen [15].

The variations in the position of the crack
mouth of the macrocrack are documented in
Fig. 6. The figure demonstrates the fundamental
difference between the notched and unnotched
situations. When no notch is present, the high-
level stress region is much larger, located along
the bottom central part of the specimen. The
material strength and fracture energy fluctuate
within the region and allow the macrocrack to
“choose a weak spot” to initiate from. The
higher the distance from the midspan, the lower
is the tensile stress. In the process of crack(s)
formation, the stress field with a certain abil-
ity of redistribution increases towards the bar-
rier (or randomly varying strength and energy).
The crack would start far from the midspan
only when the material strength (and energy)
of all points closer to the midspan is signifi-
cantly higher than in the surrounding region. It
is thus expected (and confirmed by Fig. 6) that
a short correlation length, resulting in fluctu-
ations that generate the weak spots more fre-
quently, shrinks the zone where the macrocrack
initiates. Indeed, the initiation zone for corre-
lation length d = 80 mm is wider than it is for
d = 40 mm.

The load deflection curves obtained from all
the simulations performed are plotted in Fig. 7.
The upper left corner shows the mean val-
ues and standard deviations of the peak load
Fmax. The greater the fluctuations of the lo-
cal strength, the weaker is the weakest spot
found in the specimen, and thus the lower is
the mean value: µd = 22.4 kN (deterministic),
µ8 = 17.0 kN (d = 80 mm), µ4 = 16.2 kN

(d = 40 mm). The standard deviation of the
maximum force is low for the deterministic set,
where δd = 0.6 kN (covd=2.7%). For the cor-
relation length 80 mm, it increases rapidly to
δ8 = 3.5 kN (cov8=21%).

When the fluctuation rate increases further
(d = 40 mm), the standard deviation of Fmax

drops back to δ4 = 2.1 kN (cov4=13%). This
trend arises simply from the fact that the stan-
dard deviation of the local strength in the weak-
est spot inside some fixed region decreases
with a decreasing correlation length. Theoret-
ically, the maximum standard deviation of Fmax

should be obtained for d ≈ ∞ (which is a situa-
tion where the random field can be represented
by a random variable–a randomized constant
over the specimen volume).
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Figure 7: Load-deflection curves for simulations of TPB
beams without notch.

Fig. 8 presents several selected realizations
of the random field H and the computed dam-
age patterns. One can see that the damage
patterns differ for different levels of random-
ness. In the deterministic case, the damaged
region at the peak load stage spans continu-
ously the entire bottom area and the damage
intensity directly depends on the distance from
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Figure 8: Realizations of random field H (left) and corresponding damage patterns developed in bent beams without
notch at the peak force (middle) and after the load dropped to 1/3 of its maximum (right).

the midspan. For a random local strength and
local fracture energy, the damage regions are
more localized around low random field values.
There is usually one such region for correlation
length d = 40 mm and several low strength re-
gions for d = 80 mm.

To compare the energy dissipation, we
again choose some reference compliance that
marks stages with the same LEFM crack
length. The reference compliance now equals
to 1/100 mm/kN (Fig. 7). Contrary to the re-
sults of the notched simulations, the sum of the
total energies dissipated in the strips (per unit
ligament area) depends on the material random-
ness. In Fig. 9, the deterministic calculations
show higher values of dissipated energy gd both
for the peak force stage and for the stage at the
reference compliance.

This is caused by two factors: i) the localized
macrocrack propagates in stochastic simula-
tions through areas of lower meso-level strength
and meso-level fracture energy, and so less en-
ergy is dissipated in total; and ii) distributed
pre-peak cracking outside the macrocrack oc-

curs mostly for deterministic simulations and
thus it increases the total energy dissipation.
Note that from about the middle of the speci-
men depth upwards, the energy dissipations of
deterministic and stochastic simulations match
each other again. This is because the crack
at that depth cannot choose the weak region
as it has already localized, and the stress field
forces the crack to grow from the current crack
tip, while no pre-peak distributed cracking takes
place there.

Finally, let us focus on a deeper analysis of
the energy dissipation along the bottom surface.
In the bottom boundary strip of width 2dmax =
19 mm, the dissipated energies (per unit liga-
ment area) inside and outside the macrocrack
were evaluated for the peak load stage and for
the reference compliance. These values are
plotted in Fig. 10, separately for each simula-
tion. The results document that the distributed
cracking in the bottommost layer after reaching
the peak load is close to zero.

The amount of energy dissipated outside the
macrocrack is much higher for the deterministic
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Figure 9: Energy per unit ligament area dissipated in unnotched beams up to a) the maximum load and b) the reference
beam compliance 1/100 mm/kN as a function of the vertical position in the beam.

0 2 4 6 8
0

20

40

60

80

100

di
ss

ip
at

ed
en

er
gy

g d
[J

/m
2
]

deterministic

0 5 10 15 20
ordinal number of realization

d =80 mm

0 5 10 15 20

d =40 mm

outside macrocrack at peak at the end in macrocrack at peak at the end

Figure 10: Energy dissipation inside and outside the macrocrack at the peak load and at the reference compliance stages
for every simulation.

simulations than for those with random fields.
Some of the simulations for d = 80 mm reached
the value for the deterministic model, which
can be explained by the absence of a locally
weak spot and subsequent extensive pre-peak
distributed cracking (see Fig. 8, third row). The
energy dissipated within the macrocrack at the
reference compliance is clearly higher in the de-
terministic case than in the stochastic one. This
is due to the positive correlation of the local
meso-level energy and the meso-level strength
at the inter-particle bonds. Since the macroc-
rack propagates through locally weaker areas,
it also dissipates there less energy. The aspects
related to the correlation between the local ten-
sile strength and fracture energy have been dis-
cussed in [22].

6 SUMMARY AND CONCLUSIONS

The paper analyzes the influence of the spa-
tial randomness of material on the peak load
and the energy dissipation, using a discrete
lattice-particle model that reflects the meso-
scale structure of concrete, particularly the ag-
gregate. The spatial material randomness was
introduced by simultaneous scaling of the lo-
cal meso-level strength and the fracture energy
of inter-particle bonds, by means of random re-
alizations of autocorrelated random field. Two
basic cases of three-point-bend beams were in-
vestigated: i) beams with a notch, and ii) beams
without a notch (the modulus of rupture test).
The numerical results generally confirm theo-
retical expectations. The findings are as fol-
lows:
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(i) In the simulations with a sufficiently deep
notch, the crack is forced to start at the notch
tip. Therefore, the mean value of the maxi-
mum load for notched beam simulations does
not change when spatial randomness is present.
However, the standard deviation of the maxi-
mum load increases when strength randomness
is introduced. Also, the energy dissipations
in deterministic and random media exhibit the
same mean but an increasing standard deviation
for the random cases.

(ii) In the case of unnotched beams, the
macrocrack initiates in a locally weaker spot.
The shorter the correlation length of material
properties, the weaker is the statistically weak-
est initiation spot and thus the lower is the mean
maximum load. The standard deviations of the
maximum load increase when randomness is in-
troduced. However, shorter correlation lengths
lead to a decrease of the standard deviation.

(iii) The energy dissipated in unnotched
beams depends on the randomness of the ma-
terial. Two effects responsible for this depen-
dence are identified: i) A change of the dis-
sipated energy due to correlation of the local
meso-level fracture energy and the meso-level
strength of inter-particle bonds through which
the macrocrack propagates. Depending on the
sign of the energy-strength cross-correlation,
this effect may increase or decrease the dissi-
pated energy. For the current settings of the
model, the lower the local meso-level strength,
the lower is the local fracture energy, and the
lower is the energy dissipated within the macro-
crack. ii) The pre-peak distributed cracking has
a tendency to localize in a weaker zone, and
thus the material dissipates less energy outside
the macrocrack when the random field is intro-
duced.
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[14] Grassl, P., and Bažant, Z. P., 2009. Ran-
dom lattice-particle simulation of statis-
tical size effect in quasi-brittle structures
failing at crack initiation. J. Eng. Mech -
ASCE, 135:85–92.

[15] Gutiérrez, M. A., 2004. Energy release
control for numerical simulations of fail-
ure in quasi-brittle solids. Commun. Nu-
mer. Meth. En., 20(1):19–29.

[16] Hillerborg, A., Modéer, M., and Peters-
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