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Abstract. This paper is concerned with the numerical studies on the loading rate effect on the fracture
behaviour of high-strength concrete. Numerical analysis has been carried out through employing
ANSYS Parametric Design Language (APDL). Three-point-bend tests are simulated for six different
loading rates, spanning seven orders of magnitude, from 10−4 to 103 mm/s. In order to correctly
capture the experimental results, two types of cohesive law, one for low loading rates and the other
for high loading rates, both are dependent on the crack opening velocity, are implemented. The fitting
parameters for both laws are given and the application range specified. In addition, by calculating
the energy evolution, we are able to validate the hypothesis of Bathia et al. for measuring dynamic
fracture energy. Finally, relevant information on crack advancing speed and opening velocity is also
extracted and compared to available experimental data.

1 INTRODUCTION
Time-dependent fracture in normal-strength

concrete (NSC) has been the focus of many re-
searchers for several decades. It is commonly
accepted that, according to Wu and Bazǎnt [1],
time-dependence of fracture is caused by three
phenomena: (a) the inertia effect in the neigh-
borhood of the crack-tip, (b) the rate depen-
dence bond-breakage process which produces
the fracture surfaces, and (c) viscoelastic be-
havior or creep in the bulk material. The third
phenomenon is negligible for very fast dynamic
fracture, whilst the first one is negligible for
very slow and static fracture.

In respond to the little experimental data
available [2–6] for rate-dependent fracture in
high-strength concrete (HSC), Zhang et al. [7,
8] conducted an experimental campaign to ex-
amine the fracture behavior [7] and the crack
advancing velocities from the bonded strain

gauges [8] on HSC from quasi-static to impact
loading conditions. In this paper, we aim to re-
produce these tests by employing ANSYS Para-
metric Design Language (APDL) and to numer-
ically verify the hypothesis of Banthia et al. [9]
for measuring dynamic fracture-energy.

The rest of the paper is structured as fol-
lows: the material characterization is presented
in Section 2, the finite element method and the
numerical analysis are described in Section 3,
the results for these analysis are shown in Sec-
tion 4 and finally the conclusions, obtained by
this research, are depicted in Section 5.

2 MATERIAL CHARACTERIZATION
A high-strength concrete was used through-

out the experiments of Zhang et al. [7,
8]. It was made with a Porphyry aggre-
gate of 12 mm maximum size and ASTM
type I cement, I 52.5R. Microsilica fume
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slurry and super plasticizer (Glenium ACE
325, B225) were used in the concrete
composition. The mixing proportions by
weight were 1:0.187:2.12:0.445:0.30:0.065 (ce-
ment:water:coarse aggregate:sand:microsilica
fume slurry:super plasticier). The mechanical
properties, characterized through independent
tests, are given in Table 1 and fed into the nu-
merical model.

Table 1: Mechanical properties of the high-
strength concrete, tested by Zhang et al. [7, 8].

fc ft GF E ρ
MPa MPa N/m GPa kg/m3

Mean 132 6.9 148 43 2700
St.D. 3 0.6 9 1 –

3 FINITE ELEMENT METHODOLOGY
In this section, we set out to model three-

point-bend tests, using ANSYS APDL, a script
language to automate common tasks and build
complicated finite element models in terms of
variables.

3.1 Geometry and boundary conditions
Three-point-bend specimens tested are of

100×100 mm in cross section and 400 mm in
total length, 300 mm in span, with a notch-
depth ratio of 0.5. These specimen are dis-
cretized into two 8-node-volumetric-element
groups (SOLID45), joined by pairs of contact
elements (CONTA173 and TARGE170) in the
crack propagation zone. The anti-torsion sup-
ports in the laboratory are modeled as uni-
lateral boundary conditions represented by two
contact elements (CONTA178) below the dis-
cretized specimen. Impact loads are applied to
loading-line located at the center of the top sur-
face, see Fig. 1.

The computational mesh comprises 10213
nodes and 3224 elements. It is designed to re-
duce the computational cost, so as to be fine in
the vicinity of the crack propagation zone, with
a size commensurate with the maximum aggre-
gate size and to coarsen away from the crack
propagation zone, see Fig. 1.

X
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Z

Figure 1: A typical FEM discretization and
boundary conditions for a three-point-bend
beam.

3.2 Static analysis
Time-independent analysis is performed to

determine loading-line displacement and stress
distribution under static loading conditions.
The analysis is employed to simulate the load-
ing rate 5.50×10−4 mm/s, which is normally
considered quasi-static.

The implemented static cohesive law, which
relates the traction with the crack opening dis-
placement w, according to the classical Hiller-
borg’s Fictitious Crack Model [10], is formu-
lated as follows

σ = f(w) (1)

where f(w) is a general function of the opening
displacement w, see Fig. 2c, where the shaded
area quantifies the static fracture-energy GF . A
cohesive crack initiates when the stress at the
crack-tip reaches the material tensile strength
ft and, its behavior is governed by Eq. 1 un-
til a critical crack opening displacement wc is
reached.
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Figure 2: Static cohesive law representation.
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3.3 Low loading rate analysis
Transient dynamic analysis is performed to

simulate tests within the low loading rate range,
5.50×10−1 and 1.74×101 mm/s. In order to
correctly capture the strength increase of con-
crete with the variation in loading rate, a co-
hesive law with a viscous term, developed by
Rosa et al. [11] and used by del Viso [12], is
employed. This law is represented as follows:

σ(w, ẇ) = f(w) g(ẇ) (2)

where g(ẇ) is a stress intensification factor
which depends on the crack opening velocity ẇ:

g(ẇ) = 1 +

(
ẇ

ẇ0

)n

(3)

In the above equation ẇ0 is a normalization pa-
rameter with velocity dimensions, and n, the in-
dex of rate dependence, is a non-dimensional
constant that describes the material viscosity
degree. Both parameters are fitted to capture
well the peak load for the two loading rates.

Figure 3 shows a viscous cohesive law, with
a linear-decreasing shape for its static counter-
part.
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ẇ

ẇ

Figure 3: Viscous cohesive law representation.

3.4 High loading rate analysis
Three-point-bend tests under high load-

ing rates (8.81×102, 1.75×103 and
2.65×103 mm/s) are simulated through a tran-
sient dynamic analysis.

Under low loading rates, the micro-cracking
deformation is not significant and the main

crack propagates straight forward while, un-
der high loading rates, many micro-cracks are
developed within the crack tip zone because
they lack time to unload each other. As a re-
sult, the dynamic fracture process happens in
an enlarged damage zone that dissipates more
energy. Zhou et al. [13] developed a cohe-
sive law for high loading rates based on these
micro-cracking process. In this law the increase
of micro-cracking as a function of the loading
rate [14, 15], produces a larger crack opening.
The law is formulated as follows:

σ(w, ẇ) = ft

[
1− w

h(ẇ)wc

]
(4)

where h is a crack opening intensification fac-
tor, represented as

h(ẇ) = 1 +

(
ẇ

ẇo

)m

(5)

where m describes the degree of micro-
cracking. In Fig. 4, a simple cohesive law for
high loading rate tests is depicted for different
values of crack opening velocity.	  
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Figure 4: Cohesive law for high loading rate
tests representation.

4 RESULTS AND DISCUSSION
In this section, we adopt the methodology

described in Section 3 to simulate the three-
point-bend tests carried out by Zhang et al. [7,
8]. These tests cover loading rates of seven
orders of magnitude, they can be divided into
two groups, the ones performed through the IN-
STRON machine (low loading rates) and the
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ones through the Drop-weight impact machine
(high loading rates) [16]. The lowest loading
rate 5.50×10−4 mm/s, is considered as quasi-
static, which is employed for material charac-
terization of static properties in the laboratory.

First we show that the static cohesive law
is able to correctly reproduce the entire load-
displacement curve. Then we employ the vis-
cous cohesive law to model the experimental re-
sults for low loading rates. For both cases, the
peak loads are also contrasted with the analyti-
cal ones according to del Viso in [12].

Finally, the cohesive law shown in Eq. 4 is
adopted for the tests at high loading rates, the
evolution of energy is given to confirm the hy-
pothesis of Banthia et al. [9] which is the basis
for measuring dynamic fracture energy [7]. Ac-
cording to Banthia et al., the reaction forces at
the supports are the ones that break the spec-
imen, consequently the energy below the reac-
tion versus loading-line-displacement curve EB,
see Fig. 5, is the true fracture energy.

0
0

R
 

 

P

δ

 Impact curve
 Reaction curve

P

R/2 R/2

EB

We

Figure 5: External work (or input energy) and
the dynamic fracture energy in a dynamic three-
point-bend test according to Banthia et al. [9].

4.1 Static analysis
As mentioned before, tests performed at

5.50×10−4 mm/s are considered as quasi-static,
therefore the static cohesive law is employed
for their simulation. The numerical and exper-
imental load versus loading-line-displacement
curves are compared in Fig. 6. A good agree-
ment is observed.

In addition, we plot the evolution for the
strain energy Ee, the fracture energy EF and the
kinetic energy Ek (remains zero throughout the
loading process) in Fig. 7. The total energy Et,
which is the sum of the three, is also contrasted
with the external workWe.

In Table 2, we compare the peak load ob-
tained from experimental measures, numerical
and analytical calculations. The experimental
and numerical results for fracture energy are
also given.

Table 2: Experimental–numerical-analytical
peak load and fracture energy comparison for
the quasi-static case.

Loading Pmax (kN) EF (J)
rate (mm/s) Exp. Num. An. Exp. Num.
5.50×10−4 5.0 4.8 5.0 0.7 0.6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00
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 E x p e r i m e n t a l  r e s u l t
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Figure 6: Comparison for the numerical and
experimental quasi-static load-displacement
curves.
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Figure 7: Modelled energy evolution contrasted
with the load history for the quasi-static case.

4.2 Low loading rate analysis
The viscous cohesive described in Eq. 2 is

employed to model the tests at two low loading
rates. The parameters that give the best fit are
as follows

n = 0.16, w0 = 30 mm/s (6)

For demonstration purpose, we show the nu-
merical and experimental load-displacement
curves for the loading rate 5.50×10−1 mm/s in
Fig. 8, the corresponding energy evolution in
Fig. 9. Note that, the accumulated strain energy
reaches its maximum at peak load; after that the
external work is mainly spent on crack propa-
gation.

Table 3: Experimental–numerical–analytical
Pmax and EF comparison for tests at low load-
ing rates.

Loading Pmax (kN) EF (J)
rate (mm/s) Exp. Num. An. Exp. Num.
5.50×10−1 7.3 7.9 6.4 1.1 0.8
1.74×101 8.0 8.4 7.7 1.1 1.0

The exact cohesive law followed is de-
picted in Fig. 10 for the loading rate of

1.74×101 mm/s. Notice that, the viscous ef-
fect leads to hardening of the material at the be-
ginning of the crack opening, and gradual soft-
ening as the crack opens up. When the exter-
nal load is plotted against the crack opening at
the crack tip, see Fig. 10(bottom), we observe
that a stress free crack has formed at the notch
tip, since the critical opening displacement wc

is reached when the load drops to 6.5 kN.
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Figure 8: Numerical and experimental load-
displacement curves for the loading rate
5.50×10−1 mm/s.
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Figure 9: Modelled energy evolution contrasted
with the load history for the loading rate of
5.50×10−1 mm/s.
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4.3 High loading rate analysis
The cohesive of Zhou et al. [13] described

in Eq. 4 is implemented to simulate the tests at
high loading rates. The two parameters that give
best fit are as follows

m = 0.24, w0 = 9× 10−6 mm/s (7)
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Figure 10: Viscous cohesive law evolution (top)
and the external load (bottom) plotted against
the crack opening at the notch tip for a loading
rate of 1.74×101 mm/s.

The experimental and numerical compari-
son for peak load Pmax and fracture energy EF

is shown in Table 4. Meanwhile, the load-
displacement curves and modelled energy evo-
lution are illustrated in Fig. 11 and Fig. 12 for
the loading rate 2.65×103 mm/s. Additionally
plotted in Fig. 12 are the evolutions of load
and reaction forces with respect to time. It

is noteworthy that the accumulated kinetic en-
ergy reaches maximum when the sum of reac-
tion force at the two supports reaches its peak.
At the end of the calculation, even though there
are still considerable amount of kinetic energy
left, the consumed fracture energy approaches
the energy of Banthia, which is the shaded area
shown in Fig. 5. In other words, with the ap-
plied numerical model, we have confirmed that,
the area shown in Fig. 5 can indeed represent
the expenditure of the dynamic fracture energy
at high loading rates.

Table 4: Experimental–numerical Pmax and EF

comparison for the high loading rate range.

Loading Pmax (kN) EF (J)
rate (mm/s) Exp. Num. Exp. Num.
8.81×102 21.7 23.2 6 4
1.75×103 34.8 39.9 17 16
2.65×103 45.7 53.7 29 28
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Figure 11: Numerical and experimental load-
displacement curves for the loading rate
2.65×103 mm/s.

We represent the actual cohesive law for the
loading rate of 2.65×103 mm/s in Fig. 13. It
needs to be pointed out that, the larger crack
opening (in comparison with its static counter-
part) simulated in Fig. 13 is an equivalent rep-
resentation for the increase of micro-cracking,
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since only a single crack is allowed to propa-
gate. When contrasted with the reaction force
versus crack opening at the notch tip, we ob-
serve that, the cohesive crack continues to grow
after the reaction force has reached zero.
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Figure 12: Modeled energy evolution con-
trasted with the load and reaction force histories
for the loading rate 2.65×103 mm/s.

4.4 Application range of the cohesive laws
In this section, we study the application

range for the two cohesive laws mentioned
above. For this purpose, we apply the
two cohesive laws in Eq. 2 and Eq. 4 with
their corresponding parameters in Eq. 6 and
Eq. 7 for the transitional loading rates between
1.74 ×101 mm/s and 8.81×102 mm/s. For an
error below 5%, the common range for both
laws to apply is between 4.40×102 mm/s and
5.20×102 mm/s, see Fig. 14.

4.5 Loading rate effect on crack advancing
and opening velocities

From the established numerical model, we
calculate both the crack advancing speed and
the crack opening velocity. The crack ad-
vancing speed compared to experimental mea-
surements for the loading rate 1.74×101 mm/s
and 1.75×103 mm/s are given in Fig. 15
and Fig. 16 respectively; whereas the numer-
ical crack opening velocities are presented in
Fig. 17.
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Figure 13: Cohesive law evolution (top) and
the reaction force plotted against the crack
opening at the notch tip for the loading rate
2.65×103 mm/s.
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Figure 14: Load versus displacement curves
simulated by the cohesive laws in Eq. 2 and
Eq. 4.
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From Fig. 15 and Fig. 16, it can be ob-
served that, even though the numerical results
predict lower maximum crack advancing speed,
i.e. 8 m/s instead of 16 m/s for the loading rate
1.74×101 mm/s, 300 m/s instead of 400 m/s for
the loading rate 1.75×103 mm/s, the order of
magnitude is correctly captured.

From Fig. 17b and Fig. 17c, the crack open-
ing velocity evolution with respect to time
at each node starts with a linear branch and
reaches a constant stage after peak load. This is
attributed to the weigh compensation technique
employed to attain a stable crack propagation
for the low loading rate tests. Note that, the
crack opening velocity at the notch tip, node 3,
reaches 20 mm/s, which is the same order of the
applied loading rate.
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Figure 15: Crack advancing velocities for the
loading rate 1.74×101 mm/s.

For the case of high loading rate
1.75×103 mm/s, see Fig. 17d and Fig. 17e, the
crack opening velocity evolution has a smoother
profile, a clear peak velocity is also observed.
In particular, at the notch tip, node 3, opening
velocity reaches 2 m/s, which is also the same
order of the applied loading rate.
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Figure 16: Crack advancing velocities for the
loading rate 1.75×103 mm/s.

5 CONCLUSIONS
We have implemented two cohesive laws to

model three-point-bend tests carried out at load-
ing rates which cover seven orders of magni-
tude. In particular, the viscous cohesive law
proposed by Rosa et al. [11] captures well
the experimental tests carried out at low load-
ing rates; whereas the one developed by Zhou
et al. [13], reproduces well those tests per-
formed at high loading rates. Fitting param-
eters for both laws are given and the applica-
tion range specified. From the energy evolu-
tion simulated for the tests at high loading rates,
we have confirmed that the hypothesis of Ban-
thia et al. [9] for measuring dynamic fracture
energy is valid, at least for the beam geometry
studied in this current work.

Finally, we have extracted both the crack
advancing and crack opening velocities for
all loading rates. The former ones com-
pare well with available experimental measure-
ments, whereas the latter ones show the same
order of magnitude as the corresponding load-
ing rates.
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Figure 17: a) Position of the 13 nodes where the crack opening velocities are calculated; and crack
opening velocities contrasted with load or reaction history for loading rates 1.74×101 mm/s (b-c) and
1.75×103 mm/s (d-e).
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Nomenclature
• We: External work (or input energy).

• Ek: Kinetic energy.

• Ee: Elastic strain energy.

• EF : Fracture energy.

• Et: Total energy (Ek+Ee+EF ).

• EB: Energy calculated according to the
hypothesis of Banthia (dynamic fracture
energy).

• P : Applied external load.

• R: Reaction force.

• Pmax: Peak load.

• δ: Loading-line displacement.

• δ̇: Loading-line displacement rate.

• v: Crack advancing speed.

• w: Crack opening.

• ẇ: Crack opening velocity.
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