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Abstract. In this work a hygro-mechanical approach to modelling corrosion induced cracking is pro-
posed. A coupled transport and mechanical lattice model based on Delaunay and Voronoi tessellations
is used to model the penetration of corrosion products into a concrete specimen. The penetration of
the corrosion products into the concrete is described by constitutive laws developed for mass transport
through porous materials. The cracking caused by the penetration of corrosion products is modelled
by the mechanical lattice using a damage mechanics constitutive law. The coupled approach is ver-
ified by comparison of the numerical results with the analytical solution of an elastic thick-walled
permeable cylinder, which has been derived in the present work. Then, the coupled model is applied
to the analysis of corrosion induced cracking. The results of the new approach are compared to those
of a purely mechanical approach for an impermeable material.

1 INTRODUCTION
Corrosion induced cracking and spalling has

a major influence on the life of reinforced con-
crete structures and is caused by the constrained
volume expansion of corroded reinforcement
bars. In previous work, the process of corrosion
induced cracking has been commonly modelled
by a mechanical approach using an expansive
layer between the steel and the concrete [1].
In the present work an alternative approach to
modelling corrosion induced cracking is pro-
posed. The penetration of corrosion products
into concrete is modelled by a mass transport
lattice model for fully saturated materials which
is coupled to a mechanical lattice approach. By
assuming that the product generated by corro-
sion is a fluid permeating the porous concrete
and by following the theory of effective stresses

[2], the fluid pressure obtained from the trans-
port lattice is added to the normal stress in the
mechanical model. Lattice models are suitable
for this type of work as they have been shown to
describe well displacement discontinuities that
occur in fracture processes [3] and to accurately
model flow in porous materials [4]. Cracking is
modelled by a damage mechanics constitutive
law and transport is described by Darcy’s law.

2 LATTICE MODEL
In the present work, fluid transport and me-

chanical response are modeled by lattices based
on one-dimensional structural and transport el-
ements. The domain is discretised by a dual
Delaunay and Voronoi tessellation. Figure 1
shows the structure of this dual lattice mesh.
For the mechanical model, the lattice elements
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are placed along the edges of the Delaunay tri-
angles [4]. The geometry of the mid cross-
section of the elements is determined by the
corresponding Voronoi polygon edges, (Fig-
ure 2). The transport lattice consists of one-
dimensional transport elements placed along
the edges of the Voronoi polygons [3]. Their
corresponding cross-sectional properties are de-
termined from the corresponding edges of the
Delaunay triangles. The point C in Figure 2
contains information for both the mechanical
and the transport model, which simplifies the
coupling of the two models.

Figure 1: Dual lattice mesh.

Figure 2: Dual lattice elements.

In Figure 2, u, v and φ are nodal degrees
of freedom of the mechanical model. Further-
more, Pf is the nodal unknown (fluid pressure)
of the transport model.

2.1 Mechanical Model
The stress of the mechanical model which

enters the equilibrium condition is split into an
effective stress carried by the solid and the fluid
pressure in the pores by applying the principle
of effective stress used in soil mechanics:

σ = σm + σf (1)

where σ = {σn, σs, σφ}T is the stress vec-
tor (comprising of normal, shear and rotational
stresses), σm =

�
σm
n , σ

m
s , σ

m
φ

�T is the effective
stress vector and σf = {Pf , 0, 0}T is the fluid
pressure vector (see also Section 2.2).

For the effective stress, an isotropic damage
model is used to describe the inelastic response
of the lattice element which corresponds to a
continuous reduction of the element’s stiffness.
The stress-strain law for this part is

σm = (1− ω)D : ε (2)

where ω is a damage parameter, D is the elastic
stiffness and ε = {εn, εs, εφ}T is the strain vec-
tor (comprising of normal, shear and rotational
strains). The elastic stiffness is defined as

D =




E 0 0
0 γE 0
0 0 E



 (3)

and depends on the model parameters E and γ.
For plane stress analysis and a regular lattice
of equilateral triangles, these model parameters
are related to the continuum Young’s modulus
Ec and Poisson’s ratio ν as

γ =
1− 3ν

ν + 1
(4)

E =
Ec

1− ν
(5)

For the irregular lattices used in this study the
expressions in (4) and (5) are used as an approx-
imation.

The damage parameter ω in (2) is a function
of a history variable κ which is determined from
the loading function

f(ε,κ) = εeq(ε)− κ (6)

and the loading-unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇f = 0 (7)
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The equivalent strain

εeq =
1

2
ε0(1− c)+

+

�

(
1

2
ε0(c− 1) + εn)2 +

cγ2ε2s
q2

(8)

corresponds to an elliptical strength envelope
for εeq = ε0 = ft/E (Figure 3). Here, ft is the
tensile strength of the lattice material, c is a pa-
rameter which relates the compressive strength
to the tensile strength and q relates the shear
strength to the tensile strength.

σn

σs

fs
fc ft

Figure 3: Elliptical strength envelope.

The damage function is chosen so that for
normal tensile loading (σm

s = σm
φ = 0) an ex-

ponential stress crack opening law of the form

σm
n = ftexp(−

wcn

wf
) (9)

is obtained, where wcn is the normal crack open-
ing and wf is the crack opening threshold at
which the material is fully damaged (ω = 1).

2.2 Transport Model
The mass balance equation presented in

this section describes the stationary mass flow
through a transport element subjected to fluid
pressure gradient. The material is assumed to
be fully saturated. In the balance equation, the
flux (i.e. the rate of liquid flow per unit area) is
related to the pressure gradient through Darcy’s
law, which gives

kdiv(grad(Pf)) = 0 (10)

where k is the hydraulic conductivity, Pf is the
fluid pressure. The hydraulic conductivity is de-
fined as k = ρκ/µ where ρ is the density of

the fluid, κ is the intrinsic permeability of the
porous material and µ is the absolute (dynamic)
viscosity of the fluid.

Boundary conditions are imposed either as
prescribed values of fluid pressure (on boundary
Γ1) or as prescribed values of flux (on boundary
Γ2). The latter boundary condition can then be
related to the gradient of fluid pressure through
Darcy’s law. This results in the following two
mathematical constraints on Pf :

Pf = g(x) on Γ1 and − ∂Pf

∂n
= f(x) on Γ2

where n denotes the direction normal to the
boundary while g(x) and f(x) are functions of
the spatial coordinate vector x. More details on
the discretised form of these equations can be
found in [6].

3 ANALYSIS OF THICK-WALLED
CYLINDER

The potential of the coupled lattice ap-
proach to describe the interaction of transport
and mechanical responses was investigated by
analysing an elastic plane stress thick-walled
permeable cylinder subjected to an internal and
external pressure (Figure 4). The response of
the permeable cylinder is also compared to the
behaviour of the impermeable one.

Figure 4: Geometry of the thick-walled cylinder.

The numerical solutions are compared to an
analytical equation for the radial displacements
of an elastic thick-walled permeable cylinder,
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which were derived in the present study. The
present case is limited to a stationary flow prob-
lem with homogeneous properties for both the
fluid and the solid. Other, more general, work
on thick-walled permeable cylinders has been
published in [8, 9].

Firstly, the radial fluid pressure distribution
is determined. The flux (i.e. flow rate per unit
area) q in the radial direction is

q =
Q

2πrt
(11)

and in terms of conductivity and gradient of
fluid pressure

q = −k

µ

dPc

dr
(12)

where Q is the total flow rate, r is the radius
and t is the out of plane thickness. Setting
(11) and (12) equal, integrating and using the
boundary conditions to determine Q and the in-
tegration constant gives

Pf(r) =
ln

ro
r

ln
ro
ri

Pfi + Pfo (13)

where Pfi and Pfo are the internal and external
fluid pressures, respectively (Figure 4). Sec-
ondly, the equilibrium equation is given as

dσr

dr
+

σr − σθ

r
= 0 (14)

where σr = σm
r + Pf is the radial stress and

σθ = σm
θ + Pf is the tangential stress. Us-

ing Hooke’s law to relate radial and tangential
stresses to the corresponding strains (see [10]),
the following differential equation is obtained

d2u

dr2
+

du

dr

1

r
− u

r2
+

a

r
= 0 (15)

where

a = −Pfi − Pfo

ln
ro
ri

1− ν2

Ec
(16)

The solution of (15) for the radial displacement
u(r) is

u(r) = −1

2
ar ln r +

C1

r
+ C2r (17)

The two constants C1 and C2 are determined
from the boundary conditions as

C1 = r2i

a

2

�
(1 + ν) ln

ri
ro

�

(ν − 1)

�
1−

�
ri
ro

�2
� (18)

C2 =
a

2 (1 + ν)
[1 + (1 + ν) ln ro] +

+

a

2
ln

ro
ri�

ro
ri

�2

− 1

(19)

The classical analytical solution for the radial
displacements in an impermeable (without fluid
pressure inside the material) thick-walled cylin-
der can be found in [10] and is presented here
once more:

u(r) =
1− ν

Ec

(r2i Pfi − r2oPfo) r

r2o − r2i
+

+
1 + ν

Ec

(Pfi − Pfo) r2i r
2
o

(r2o − r2i ) r

(20)

The lattice model results were compared to
the new analytical solution of radial displace-
ment for the permeable cylinder and the well
known solution for the impermeable cylinder
[10]. For the geometry of the cylinder, the fol-
lowing parameters were selected: inner radius
ri = 8 mm, outer radius ro = 58 mm, inner
pressure Pfi = −10 MPa and outer pressure
Pfo = 0 MPa. Furthermore, the Young’s modu-
lus of the solid was chosen as Ec = 38.7 GPa.
The response for two Poisson’s ratios of ν = 0
and 0.2 were studied. The radial displacement
is independent of the hydraulic conductivity of
the fluid as long as it is constant throughout
the cylinder. The comparison of the results
is shown in Figure 5. The lattice model re-
produces well the analytical solutions for the
permeable and impermeable thick-walled cylin-
der. The agreement is particularly good for
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Figure 5: Comparison of numerical and analytical results for the radial displacement for the permeable and impermeable
thick-walled cylinder.

ν = 0. The solution for the permeable thick-
walled cylinder is very different from the im-
permeable one. For the permeable cylinder,
the fluid pressure inside the material causes a
stretching of the cylinder in the radial direc-
tion. On the other hand, the impermeable cylin-
der shortens in the radial direction. Also, Pois-
son’s ratio has a strong influence on the result
of the permeable cylinder. Not only the radial
displacements, but also the stress distributions
differ considerably for permeable and imperme-
able cylinders, which is investigated in the next
section where the lattice approach is applied to
the onset of corrosion induced cracking.

4 ANALYSIS OF CORROSION IN-
DUCED CRACKING

In the present section, the new coupled lat-
tice approach is applied to the plane stress anal-
ysis of a concrete specimen with a single eccen-
trically placed reinforcement bar. The geometry
and material properties were taken from the ex-
perimental study on corrosion induced cracking
presented in [12]. The specimen geometry is
shown in Figure 6.

Figure 6: Geometry for concrete specimen according to
[12].

In the present preliminary study the numer-
ical results are not yet compared to the experi-
mental ones. Instead, an internal pressure is ap-
plied at the circumference of the reinforcement
bar and the response in the form of crack pat-
terns for the permeable and impermeable spec-
imens are compared. The material parameters
for the solid were chosen as ft = 3.195 MPa,
Ec = 29.6 GPa, ν = 0.2. Furthermore, the
fracture energy Gf was set to a large value
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(a) (b)
Figure 7: Detail (marked in Figure 6 by the dashed boundary) of fracture patterns for a) permeable and b) impermeable
material for the same internal pressure. Black lines indicate cross-sections of mechanical elements in which damage
increases at this stage of analysis.

to avoid any numerical problems in this initial
study. The material parameters for the transport
part were assumed as µ = 1 × 10−9 t/(mms),
κ = 1× 10−13 mm2 and ρ = 1× 10−9 t/mm3.

The loading in this analysis was applied as
an internal pressure at the circumference of the
reinforcement bar. The reinforcement bar was
not modeled. The pressure distribution was de-
termined from the transport analysis of the per-
meable specimen by applying a uniform flux
along the circumference of the reinforcement
bar. The fluid pressure at the outer boundary
was assumed to be in equilibrium with the at-
mosphere and the specimen was assumed to
be fully saturated. The flux, and therewith the
pressure, was applied incrementally. Figure 7a
shows the fracture patterns for a pressure dis-
tribution that was determined from the anal-
ysis of the permeable specimen for a flux of
1.2 × 10−14 t/(mm2s). For the impermeable
solution the same pressure distribution was ap-
plied at the circumference of the specimen. The
fracture patterns predicted for the permeable
and impermeable specimen differ considerably.
Significantly more cracking occurs for the per-
meable specimen. It should be noted that these
fracture patterns are obtained for the same pres-
sure distribution along the circumference of the
reinforcement bar.

5 CONCLUSIONS AND FUTURE WORK
A lattice approach which couples mechani-

cal and mass transport models using the theory
of effective stresses has been applied to anal-
yse the displacements in a thick-walled elastic
cylinder and corrosion induced cracking in a
concrete specimen with a single reinforcement
bar. For the thick-walled elastic cylinder an
analytical solution for the radial displacements
has been presented. The main conclusions of
the present study are the following.

For the thick-walled cylinder, the numeri-
cal and analytical results are in good agreement
for both a permeable and impermeable mate-
rial. For the permeable cylinder, the fluid pres-
sure results in an increase of the thickness of the
cylinder, whereas for the impermeable material
the thickness decreases.

For the reinforced concrete specimen with a
single reinforcement bar, the same internal pres-
sure at the circumference of the reinforcement
bar results in very different fracture patterns for
permeable and impermeable materials. For the
permeable material, much more cracking oc-
curs.

In the future, the nonlinear analyses of the
concrete specimen will be extended so that the
analyses results can be compared to the exper-
imental results in [12]. Also, the coupling of
the mechanical and transport model will be aug-
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mented to take into account the change of con-
ductivity due to cracking [7].
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