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Abstract. It has been commonly agreed that the crack propagation within concrete structures can
be realistically simulated by non-local damage models. Due to their low complexity and computa-
tional cost, simplified damage models are frequently used in virtual testing calculations of structural
health monitoring applications. This contribution aims at justifying the application of such simplified
damage models for early damage states.

1 INTRODUCTION
In the last three decades, the interest in mod-

elling local damage phenomena increased con-
tinuously, which triggered the development of
several damage models for various materials.
Available methods for concrete structures are
reviewed in [1] and [2]. For concrete struc-
tures, continuum damage models are often used
compared to discrete crack models, as during
the initiation phase of concrete cracks the dam-
age zone is larger than the discrete fully estab-
lished crack. The non-local damage model de-
veloped in [3] and the equivalent implicit gra-
dient damage model (e.g., [4]) are both appro-
priate for a realistic modelling of crack propa-
gation in concrete together with the accompa-
nying crack process zone. A typical problem
of complex damage models is the appropriate
definition or identification of several model pa-
rameters. Some parameters are related to phys-
ical phenomena, other parameters are necessary
to stabilise numerically the problem. In addi-
tion, such damage propagation calculations re-
main computationally very expensive.

In the structural health monitoring commu-

nity, virtual tests are frequently performed to
design and optimise damage sensitive features
to monitor continuously the health of the struc-
ture. However, advanced fracture mechanics
models are rarely applied. Usually, simplifica-
tions based on linear material models with re-
duced Young’s modulus of the whole cross sec-
tion are used to simulate a certain damage. Ex-
amples can be found in [5], [6], and [7]. De-
raemaeker [8] first applied an advanced frac-
ture mechanical damage model to investigate
the performance of a damage indicator based on
dynamic strains. Following this idea, other in-
vestigations were performed using an implicit
gradient damage law to obtain realistic damage
patterns for a notched [9] and a simply sup-
ported plain concrete beam [10].

In this paper, a comparison between sim-
plified methods based on partial stiffness re-
ductions of a linear model and the more ad-
vanced nonlinear damage propagation calcula-
tion based on the implicit gradient damage law
is conducted. The results show that under cer-
tain conditions very simple damage pattern de-
scriptions can be applied without significant
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loss of accuracy in global, as well as, in the lo-
cal behaviour of the structure under static load-
ing conditions.

2 IMPLICIT GRADIENT DAMAGE LAW
The classical stress-strain relation of elastic-

ity based damage mechanics at a certain point
in the structure reads

σ = (1−D(κ))Cε, (1)

where σ and ε are the stress and strain tensor
andC the linear elastic material tensor, which is
defined in matrix format for a plane-stress state
as

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (2)

with the Young’s modulusE and the Poisson ra-
tio ν. The damage function value D(κ) is set to
zero, for undamaged materials. By increasing
D(κ), a damage growth is in general possible,
depending on the previous stress-strain-history.
Whether a damage growth is possible or not is
defined by the damage loading function

f(ε̄, κ) = ε̄− κ, (3)

with a positive nonlocal equivalent strain mea-
sure ε̄ and a strain related threshold variable κ.
For quasi-brittle damage, the Kuhn-Tucker re-
lation needs to be fulfilled in addition

f ≤ 0, κ̇ ≥ 0, and κ̇f = 0. (4)

Therefore, κ needs to be adjusted to guaran-
tee that the equivalent strain measure ε̄ is never
larger than than κ, that the value of κ can never
decrease, and that an increase of the threshold
value κ is only possible with κ = ε̄.

Assuming an exponential softening law, the
damage function is defined as follows

D(κ) ={
1− κ0

κ

(
1− α + αe−β(κ−κ0)

)
: κ > κ0

0 : κ ≤ κ0
,

(5)
in which κ0 defines the initial linear elastic do-
main in terms of equivalent strains.

One possible local equivalent strain defini-
tion is the modified von-Mises definition

ε̃ =
k − 1

2k(1− 2ν)
I1+

+
1

2k

√
(k − 1)2

(1− 2ν)2
I2

1 +
2k

(1 + ν)2
J2

(6)

according to [11]. Assuming a 2D plane stress
formulation, the first invariant of the strain ten-
sor and the second invariant of the deviatoric
strain tensor are

I1 =
1− 2ν

1− ν
(εxx + εyy) and

J2 = 2(ε2
xx + ε2

yy − εxxεyy) + 1.5ε2
xy+

+
2ν

(1− ν)2
(εxx + εyy)

2 ,

(7)

respectively. The parameter k = fc
ft

al-
lows accommodating different values for tensile
strength ft and compression strength fc, which
makes this local equivalent strain formulation
suitable for concrete.

Based on local equivalent strains ε̃(y) at cer-
tain positions y of the structure, a nonlocal
equivalent strain

ε̄(x) =
1

Ψ(x)

∫
Ω̃

ψ(y;x)ε̃(y)dΩ (8)

with
Ψ(x) =

∫
Ω̃

ψ(y;x)dΩ (9)

can be defined, thanks to which the local equiv-
alent strains ε̃(y) are averaged over a certain
volume Ω̃. The weighting function ψ(y;x)
guarantees that local equivalent strains ε̃(y)
close to the position x have a higher weight
to the nonlocal equivalent strain ε̄(x) than lo-
cal equivalent strains related to the boundary of
the volume Ω̃.

After substitution of the Taylor expansion of
ε̃(y) into the Equation (8), a differential equa-
tion

ε̄(x) = ε̃(x)+ci
δ2ε̃

δx2
i

++cij
δ4ε̃

δx2
i δx

2
j

+ . . . (10)
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can be obtained, which reduces to

ε̄(x) = ε̃(x) + c∇2ε̃(x) (11)

by neglecting higher order terms. Applying
the Laplacian operator to Equation (11) and ne-
glecting again higher order terms, it yields

c∇2ε̄(x) = c∇2ε̃(x). (12)

Finally, the Equation

ε̄(x)− c∇2ε̄(x) = ε̃(x) (13)

can be derived, by subtracting Equation (12)
from (11). Hence, the nonlocal strain is given
as the solution of the boundary value problem
consisting of the Helmholtz equation (13) and
appropriate boundary conditions. Further ex-
planations can be found in [4].

3 SIMPLIFIED LINEAR REPRESENTA-
TION

3.1 General idea
The previously described damage law is suit-

able for the calculation of damage propagation
in plain concrete. For each stress-strain-state,
the damage function values D(κ) defined for
each integration point of all elements are cal-
culated. If someone is only interested in one
single specific stress-strain-state, the complex
nonlinear finite element model can be replaced
by an ordinary linear finite element model, if the
damage function valuesD(κ) are known for ev-
ery integration point i of all elements.

Without loss of generality of the proposed
approach, it is assumed that the finite element
model consists of 9-node quadrilateral plane fi-
nite elements using a 3 by 3 Gauss point inte-
gration scheme. For each integration point, a
different damage function value D(i) = D(i)(κ)
can be obtained. All other constitutive law pa-
rameters are defined to be constant for all 9 in-
tegration points i. Therefore, the secant element
stiffness matrix can be derived by Gauss point
integration

Ks =
9∑
i=1

(1−D(i))B(i)
TCB(i) detJ(i)w(i)t(i)

(14)

in which w(i), J(i), t(i), B(i) are the weight-
ing coefficients of the Gaussian points, the Ja-
cobian matrix, the thickness of the element, and
the strain-displacement-matrix, respectively.

Using this secant element stiffness matrix
Ks for each element, the linear unloading and
reloading path of the nonlinear finite element
model can be exactly represented with the ordi-
nary linear finite element model. This can be re-
alised by defining the Young’s modulus of each
integration point and element by Edam(i) =
(1 − D(i))E. Of course, most standard finite
element codes do not support the option to de-
fine the Young’s modulus individually for each
integration point of an element. Hence, a pos-
sibility is needed to assign a suitable constant
damage function value D(i) = D̃ ∀ i for all in-
tegration points within each element to obtain
the Young’s modulus

Edam = (1− D̃)E (15)

related to damaged elements. In the following
subsections, several methods are discussed.

3.2 Averaging of damage function values
Assuming the 9 damage function values D(i)

per element serve as support points for a regres-
sion model, several pairs of polynomials can be
used to find a regression surface. One possibil-
ity is to use interpolation functions h(ξ, η) =
[h1(ξ, η) h2(ξ, η) . . .]T defined in the natural
coordinates (ξ, η) as typically applied for dis-
placement interpolation in finite element formu-
lations. With the matrices

A =
∑
i

detJ(i)w(i)t(i)h(ξ(i), η(i))
Th(ξ(i), η(i))

(16)
and

y =
∑
i

detJ(i)w(i)t(i)h(ξ(i), η(i))
TD(i) (17)

equation
Ax = y (18)

can be solved in a least squares sense with re-
spect to the regression coefficients x. The new
regression surface is then defined by

f(ξ, η) = h(ξ, η)Tx (19)
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at every point (ξ, η) in the natural coordinate
system.

As a constant approximation of the damage
function value is of interest, an interpolation
function h = h1 = 1 ∀(ξ, η) is chosen. The
scalar value x = D̃a is a constant average of
the damage function value distribution within
one element, which can be applied in Equation
(15). In contrast to the subsequent methods, no
iteration is needed, which makes this approach
computationally very efficient and robust.

3.3 Optimised damage function value
To obtain an optimal damage function value

constant for all integration points of the el-
ement, three different objective functions are
proposed. The first objective function is related
to the Frobenius norm of the differences of stiff-
ness matrices related to the secant stiffness Ks

according to Equation (14) and the stiffness ma-
trix

Kc(D̃) =
9∑
i=1

(1−D̃)B(i)
TCB(i) detJ(i)w(i)t(i)

(20)
obtained by a constant damage function value
D̃. Hence, the optimal value is given by

D̃k = argmin
D̃

‖Ks −Kc(D̃)‖F. (21)

A criterion, which considers the strain distri-
bution, can be defined based on the Euclidean
norm of the differences between the internal
forces

rs = Ksds (22)

related to the secant stiffness and

rc(D̃) = Kc(D̃)ds (23)

using the displacements of each element node
assembled in the vector ds, which are obtained
from the finite element model applying the se-
cant element matrices Ks. The optimality cri-
terion is then defined by

D̃r = argmin
D̃

‖rs − rc(D̃)‖2. (24)

Another criterion is the potential energy of
the element under deformation. Based on the
differences of the elastic potential energy re-
lated to the secant stiffness

Πs =
1

2
dT
sKsds (25)

and the elastic potential energy assuming a con-
stant damage function value within the element

Πc(D̃) =
1

2
dT
sKc(D̃)ds, (26)

the optimal constant damage function value can
be obtained by

D̃π = argmin
D̃

‖Πs − Πc(D̃)‖2. (27)

The optimal damage function values are as-
sembled in Equation (15) to defined the reduced
Young’s modulus of each element.

3.4 Artificial damage pattern
The previously described approaches as-

sume that size and area of the damage pattern
are known for each element. If no detailed in-
formation about the geometry of the damage
pattern is available, a global damage pattern
needs to be defined artificially as realistic as
possible. The parameters, which describe this
damage pattern can be, for example, calibrated
by means of a global load-deflection-curve, as
done in this study.

A common approach for an artificial dam-
age pattern is to distribute the damage equally
across the whole cross-section within a certain
width. In this case, the expansion of the dam-
age is predefined and the normalised value of
damage D̃v ∈ [0, 1] can be adjusted. The value
D̃v can be directly applied in Equation (15) to
calculate the reduced Young’s modulus of the
elements within the predefined damaged area.

If the damage path is approximately known,
the damage propagation can be described by
few variables. In this study, only one variable
λ ∈ [0, 1] is applied to define the damage propa-
gation. The variable λ indicates the crack length
within the normalised section height. All el-
ements within the described damaged area are
assumed to be completely damaged. Hence,
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D̃λ = 1 is assembled in Equation (15) for those
elements.

Figures 1 and 2 depict the approach in case
of a single crack and Figures 3 and 4 show
an example in case of multiple cracks within
a beam structure. For multiple cracks a prede-
fined function f(x) is introduced to define the
damage distribution for each crack depending
on its position x within the structure.

D̃v

beam length se
ct

io
n

he
ig

ht

Figure 1: Definition of damage pattern with variable
damage value D̃v and predefined constant damaged area
in case of one crack.
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Figure 2: Definition of damage pattern with variable
damage length λ and a predefined constant damage width
and damage severity D̃λ = 1 in case of one crack.
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Figure 3: Example of damage pattern definition with vari-
able damage value D̃v and predefined constant damaged
areas in case of multiple cracks.
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Figure 4: Example of damage pattern definition with
variable damage length λ and predefined constant dam-
age widths and damage severity D̃λ = 1 in case of mul-
tiple cracks.

4 BENCHMARK: NOTCHED BEAM
4.1 System description

The study is related to a notched beam un-
der three point loading as described in Figure
5. The experimental results are presented in
[12], whereas the procedure to identify the un-
certain damage and constitutive law parameters
was conducted in [9], where the difference be-
tween the experimentally obtained and numer-
ically derived global load-deflection-curve has
been minimised. The deflections are related to
the vertical displacements in the centre of the
beam. In the present study, only one possi-
ble parameter set is chosen, which is related to
the second run using the objective functionW1

based on the Euclidean norm with a constant
variable lc = 1mm related to the descriptions
in [9]. The material and damage law parameters
are given in Table 1. The finite element model,
applied in this study, consists of 9-node plane
elements with element sizes of 2.5mm around
the damage zone and 5mm elsewhere.
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FBGS chain 1

FBGS chain 3
FBGS chain 2

Figure 5: Geometry of notched beam and position of
FBGS (fibre bragg grating sensor) chains.
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Figure 6: Comparison of load-deflection-curves for investigated simplified damage models of the notched beam.
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Table 1: Parameter combinations of material and damage
law obtained by model updating according to [9].

parameter unit value
Young’s modulus E

[
1010 N

m2

]
2.1262

Poisson’s ratio ν [-] 0.3000
compression strength fc

[
107 N

m2

]
4.3726

tensile strength ft
[
106 N

m2

]
2.5491

α [-] 0.9790
β

[
102
]

1.1987

density %
[
103 kg

m3

]
2.0448

lc =
√
c [mm] 1.0000

0
0.2
0.4
0.6
0.8

1
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D̃
v
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]
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single crack value D̃v

single crack length λ

Figure 7: Damage variable history for artificial damage
pattern descriptions of the notched beam.

4.2 Global load-deflection-curve
By applying the approaches introduced in

Section 3 to generate a finite element model
with a simple linear elastic material law, the
global load-deflection-curves visualised in Fig-
ure 6 can be obtained. With both artificial
damage pattern approaches, a perfect fit of the
global load-deflection-curve can be obtained.
Of course, the parameters are optimised with re-
spect to this load-deflection-curve.

If the true damage pattern is taken into ac-
count, the criterion using the minimised elastic
potential energy yields the best agreement with
respect to the global load-deflection-curve.

4.3 Local damage pattern
Figures 8, 9, and 10 show the obtained dam-

ages patterns in terms of the Young’s modu-
lus distribution for all applied simplification ap-
proaches at different damage states. For all ap-
proaches (D̃a, D̃k, D̃r, D̃π), where the damage
pattern is assumed to be known, the differences
are very small. Of course, the artificial pat-
terns (D̃v, λ) differ a lot more from the refer-
ence damage pattern. The history of the optimal
damage’s value and length for the description of
the artificial damage patterns is given in Figure
7.

D̃a D̃k D̃r D̃π

D̃v λ D(i) [1010]
2.0

1.0

0.0

Figure 8: Young’s modulus distribution around the crack
for the referenceD(i) and all simplification approaches
resulting in a deflection of 0.05mm.

D̃a D̃k D̃r D̃π

D̃v λ D(i) [1010]
2.0

1.0

0.0

Figure 9: Young’s modulus distribution around the crack
for the reference D(i) and all simplification approaches
resulting in a deflection of 0.1mm.

D̃a D̃k D̃r D̃π

D̃v λ D(i) [1010]
2.0

1.0

0.0

Figure 10: Young’s modulus distribution around the
crack for the reference D(i) and all simplification ap-
proaches resulting in a deflection of 0.3mm.
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Figure 11: Distribution of averaged strains along the longitudinal axis of the beam at different heights of the cross-section.
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Figure 12: Distribution of the averaged strains in the central cross-section of the beam.
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4.4 Averaged strains
The measures of interest in this benchmark

study are the horizontal strains in the beam,
which could be measured for example by FBGS
(fibre bragg grating sensor) chains as indicated
in Figure 5. The averaged strains using a strain
gauge length of 5cm at different heights of the
beam are presented in Figure 11 with progress-
ing damage. It can be observed that all sim-
plifications related to the realistic damage pat-
tern show an almost perfect agreement with the
reference. Also the artificial damage pattern de-
scription using the length definition of the crack
shows an acceptable result at least for early
damage states.

Figure 12 depicts the averaged strain distri-
bution in the central cross-section of the beam
with a gauge length of 5cm. The size of discrep-
ancy in relation to the reference solution de-
pends clearly on the position of the strain gauge
within the beam’s cross-section.

5 BENCHMARK: SIMPLY SUPPORTED
BEAM

5.1 System description
The possibilities to simplify a multiple crack

pattern are investigated by a simply supported
plain concrete beam with a cross-section of
10cm by 10cm. Its material and damage law pa-
rameters are given in Table 1. Multiple cracks
are initiated by reducing the tensile strength to
50% of the original value at the predamaged ar-
eas, indicated in Figure 15. A finite element
model with quadratic 9-node plain elements of
size 5mm, refined to 2.5mm around the dam-
aged areas, is applied for the numerical calcula-
tions.

The load-deflection-curve, presented in Fig-
ure 16, is related to the vertical deflection at the
position of the load application. Figure 17 de-
picts the damage patterns at various load steps
of the reference solution obtained by the im-
plicit gradient damage law.

5.2 Global load-deflection-curve
The criteria described in Section 3 are ap-

plied to generate the global load-deflection-

curves of the simplified linear models, which
are summarised in Figure 16. In general, the re-
sults are very similar to those observed for the
notched beam. If the reference damage pattern
is assumed to be known, the smallest discrepan-
cies are obtained by following the energy crite-
rion approach. In terms of the artificial damage
patterns, a single crack and a multiple crack ap-
proach are tested. For both approaches suitable
values can be found to follow exactly the global
load-deflection-curve of the reference solution
at each load step.

5.3 Local damage pattern
By applying the approaches that assume a

known damage pattern according to Subsec-
tions 3.2 and 3.3, very similar damage distri-
butions can be obtained in comparison to the
reference solution. The example for the opti-
mal energy approach in case of load step 65 is
presented in Figure 18.

Figure 18 shows also the damage patterns for
the artificial damage model approach using a
constant value for the whole cross-section and
using a length parameter to define the damage
progress. The evolution of the damage variables
D̃v and λ in dependency of the deflection is vi-
sualised in Figure 13.

It can be observed that it is important to re-
late a certain percentage of damage to the ap-
plied underlying damage model. For example,
a damage of 20% related to the single crack
approach where the severity of damage is ad-
justed for the whole cross-section indicates a
small damage, while a damage of 20% related
to the multiple crack approach described by the
length of the crack indicates the ultimate load
state of the structure.

Moreover, the adjustment of suitable dam-
age levels for the artificial damage models is
very difficult, if no global load-deflection-curve
is available.

5.4 Averaged strains
Next to the global load-deflection-curve, av-

eraged strains along the FBGS (fibre bragg grat-
ing sensor) chains are investigated with respect
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to the simplified linear representations of the
damage pattern as presented in Section 3. The
positions of the FBGS chains are described in
Figure 14. From the practical point of view,
strains can be only measured with respect to
a certain distance, which leads then to an av-
eraged strain. Several strain gauge lengths are
possible for FBGS chains. In this benchmark
study, 5cm (chain 1a and 2a) and 20cm (chain
1b and 2b) strain gauge length are assumed at
different heights of the beam.

In Figure 19, the comparison of the av-
eraged strains for each FBGS position and
gauge length is demonstrated for the investi-
gated simplified damage approaches at several
load steps (LS). LS 15 is related to a linear
undamaged state, while LS 65 represents the
peak of the global load-deflection-curve. Of
course, for structural health monitoring sys-
tems, small damages as represented by LS 45
or LS 55 are of higher importance. In gen-
eral, the observed discrepancies are smaller, if
a 20cm gauge length instead of a 5cm gauge

length is applied. Unfortunately, a larger aver-
age length leads to a reduced significance with
respect to the damage. All simplification ap-
proaches, assuming a known damage pattern,
show almost identical averaged strains for the
considered load steps. Only the approach fol-
lowing the energy criterion is representatively
presented in Figure 19. The curves based on ar-
tificial damage patterns agree well with the ref-
erence curves for lower load steps until LS 45.
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Figure 13: Damage variable history for artificial damage
pattern descriptions of the simply supported beam.
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Figure 16: Comparison of load-deflection-curves for investigated simplified damage models of the simply supported
beam.
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Figure 17: Young’s modulus distribution around the cracks for the reference solution Di using the implicit damage law
for load steps (LS) 45, 65, and 115.
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Figure 18: Young’s modulus distribution around the cracks for selected investigated simplifications at load step LS 65.

6 CONCLUSIONS
This paper investigated approaches to sim-

plify the modelling of cracks in a concrete
structure. Computationally expensive damage
propagation methods using the implicit dam-
age framework and very simple damage models

typically applied in the field of vibration-based
structural health monitoring were compared. A
notched beam with a single crack and a simply
supported beam with multiple cracks have been
investigated.

The investigations showed that even very
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Figure 19: Distribution of averaged strains along the longitudinal axis of the beam at different heights of the cross-section
for 5cm (1a/2a) and 20cm (1b/2b) gauge lengths.

simple damage pattern models, such as a con-
stant damage over the cross-section, can be ap-
plied to represent the global behaviour of the
structure as demonstrated by the global load-
deflection-curves. Also the averaged strains re-

sulting from very basic descriptions of the dam-
age pattern led to similar results in compari-
son to the computationally expensive reference
solution, if small damages have been the sub-
ject of interest and if the averaging length has
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been sufficiently large. By applying simplified
damage modelling approaches, the adjustment
of the severity of damage turned out to be cum-
bersome, if no reference solution is available.

The current comparison was limited only to
static strains resulting from three-point load-
ing tests. In vibration-based structural health
monitoring systems dynamic strains are of in-
terest, which are the input values of various fea-
tures indicating the health of the structure. As
the error propagation is handled differently in
each feature, further research is needed to jus-
tify generally the application of simplified dam-
age models. In addition, different loading con-
ditions might of interest in future.
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