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Abstract:  The paper deals with numerical simulations of fracture in concrete using a continuous, 
discontinuous and coupled continuous-discontinuous constitutive model. In a continuum approach, 
cracks were treated in a smeared sense with an elasto-plastic constitutive law with Rankine 
criterion. To ensure mesh-insensitive results, an integral non-local theory was applied. 
Alternatively, cracks were described as displacement jumps using the eXtended Finite Element 
Method (XFEM). A coupled model of these two formulations was also proposed. Some benchmark 
tests were performed. 
 

 

1 INTRODUCTION 

Modelling of quasi-brittle materials like 
concrete is demanding task due to the presence 
of material fracture. At the beginning of 
loading, a region with several micro-cracks is 
formed. Later these micro-cracks create 
discrete macro-cracks. There exist two basic 
approaches to simulate cracks in solid bodies. 
The first idea is based on a continuum 
description. The material can be described 
using e.g. elasto-plastic, damage mechanics or 
coupled constitutive laws. These formulations 
include softening, so they have to be equipped 
with a characteristic length of microstructure 
to preserve the well-posedness of the boundary 
value problem. It can be achieved by means of 
e.g. micro-polar, non-local or gradient 
theories. Alternatively, a crack can be regarded 
as a discrete macro-crack with a displacement 
jump (by omitting a micro-crack phase). The 
oldest solutions used interface elements 

defined along element edges. The modern ones 
allow for considering cracks in the interior of 
finite elements using embedded discontinuities 
or XFEM (eXtended Finite Element Method) 
[1] based on a concept of the partition of unity. 
Continuum constitutive laws are more realistic 
in describing strain localization phenomena, 
but they cannot properly capture the crack 
formation and propagation. Discontinuous 
models, on the other hand, can handle macro-
cracks, but they cannot describe localized 
zones. A combination of a continuous and 
discontinuous approach enables to capture a 
full fracture process. Such coupling can be 
done in several ways, e.g. the latest approaches 
combine XFEM with implicit gradient [2] or 
integral-nonlocal [3] isotropic damage models. 
Wells et al. [4] combined XFEM with the 
Perzyna viscoplastic model. 

The paper presents FE results obtained with 
a continuous elasto-plastic model and non-
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local softening and a discontinuous XFEM 
approach. A coupling formulation between 
these two models was also proposed. 

2 CONTINUUM CONSTITUTIVE 
MODEL 

An elasto-plastic constitutive law with 
standard Rankine yield criterion was used 

( )κσσ tf −= max , (1) 

where maxσ –  maximum principal stress, tσ  –

tensile yield stress and κ – hardening/softening 
parameter. The associated flow rule was 
assumed. To define softening under tension, a 
curve proposed by Hordijk [5] was applied 
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with κu – ultimate value of the softening 
parameter at the non-zero yield stress and 
constants A1, A2 and A3 are defined as  
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with the coefficients c1=3.0 and c2=6.93. 
To obtain mesh-objective results within 

continuum constitutive models including 
material softening, an integral non-local theory 
was used as a regularisation technique [6]. In 
plasticity, rates of the softening parameter dκ 
were treated non-locally according to 
Brinkgreve [7] 

( ) ( ) ( ) ( )xxx κκκ ˆdd1d mm +−=     (4) 
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where x - coordinates of considered (actual) 
point, ξξξξ – coordinates of the surrounding 
points, m – non-locality parameter (it should 
be greater than 1). The weighting function 
(Gauss distribution) was defined as 

( )
2

1
0








−
= l

r

e
l

r
π

α ,     (6) 

where r – distance between points, l – 
characteristic length of the microstructure.  

In FE-simulations an approximated method 
was used to evaluate non-local quantities. In 
the given integration point, the influence of its 
neighbours was determined using the values 
from the previous iteration. It enabled us to 
simplify calculations and to preserve locality 
of plasticity algorithms.  

3 DISCONTINUOUS APPROACH 

To describe displacement jumps in 
continuum, the eXtended Finite Element 
Method (XFEM) was chosen. It is based on 
the Partition of Unity (PUM) and it allows for 
defining cracks across finite elements. It is 
achieved by adding locally extra known terms 
to a standard FE displacement approximation. 

The formulation used follows (with some 
slight modification and improvements) the 
general idea presented by Wells and Sluys [8] 
based on the so-called shifted-basis 
enrichment [9] to describe a displacement field 
with discontinuous jumps. In the initial 
continuum body, a linear elastic constitutive 
law was assumed. A new crack could be 
activated or an existing crack could propagate, 
if the standard Rankine’s criterion (σmax > ft) 
was fulfilled at least in one point of the 
element at the front of the crack tip. A new 
segment was added to cracks with a new crack 
tip located at the element edge.  

To find a direction of the crack propagation, 
the direction of the crack extension was 
assumed to be perpendicular to the direction of 
the maximum principal stress. To smoothen 
the stress field around the crack tip, the 
average stresses *σ  was used for determining 
the crack direction according to Wells and 
Sluys [8] 

∫=
V

* wdVσσ ,     (7) 

where V - semicircle domain at the front of the 
crack tip, w – weight function assumed as 
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with lav as the averaging length related to the 
size of finite elements (not equivalent with a 
characteristic length of microstructure). In the 
research literature, more advanced algorithms 
can be found. Oliver et al. [10] formulated so-
called global tracking algorithm. The 
propagation directions of all cracks were 
determined globally by solving a stationary 
anisotropic heat conduction problem. Moës 
and Belytschko [11] assumed that cohesive 
tractions had no influence on the crack 
propagation direction and used the maximum 
circumferential stress criterion from Linear 
Elastic Fracture Mechanics (LEFM). 

After Wells and Sluys [8], the following 
format of the loading function within discrete 
cohesive laws was assumed 
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with the history parameter κ equal to the 
maximum value of the displacement jump 
[[un]] achieved during loading. The softening 
of the normal component of the traction vector 
was described using either an exponential 
relationship 
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or a linear one  
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where Gf – facture energy, Df – correction term 
defined as 
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with the drop factor df [12]. This factor 
improves the convergence under tensile-
compressive load changes. With increasing 
value of df, the term Df approaches 1. During 
unloading, the secant stiffness was used with a 
return to the origin (damage format). In a 
compressive regime, the penalty stiffness in 
the normal direction was used (depending 
upon the drop factor df). In the tangent 

direction, a linear relationship between a 
displacement jump and traction was defined 
with the stiffness TS.  

4 COUPLED NUMERICAL APPROACH 

A coupled model enables to simulate both the 
creation of localised zones of deformation and 
the evolution of discrete cracks. During the 
first phase, the elasto-plastic constitutive law 
described in Section 2 was used. If the 
specified value of the softening parameter κ 
was exceeded in any of integration points in 
the element at the front of the crack tip, the 
formulation switched to a cracked element. A 
new crack segment was introduced. The 
direction of a discrete crack propagation p was 
determined by (similar as in [4])  

dVpwp
V
∫= )()()( ξξξκ  (13) 

where p  – normalized direction from crack 
tip to the point, w – weight function defined in 
Eqn. (9). An introduction of a crack segment 
preserved the stress equilibrium. Therefore 
cohesive discrete material behaviour was 
modified to take into account the initial 
displacement jumps [[init

n
u ]] and [[ init

s
u ]]. 

These values were determined on the basis on 
the known tractions init

n
t  and init

s
t  at the 

moment of a crack creation and the defined 
relationships in a normal and tangential 
direction. In other words, XFEM softening in 
normal direction started not from the value ft 
(peak) but from the smaller value init

n
t . The 

initial displacement [[ init

n
u ]] was also added to 

the softening parameter κ. 
The addition of a new crack segment 

introduced also a new barrier in non-local 
interactions (the points lying at the opposite 
sides of a crack might not see each other in 
non-local summations causing the so-called 
“shading effect”). This operation is equivalent 
to new boundary conditions in a coupled 
gradient damage and XFEM model [2]. This 
assumption is correct for the case when the 
transition from a continuous to discontinuous 
crack description of takes place at very small 
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values of init

n
t . If the transition point is defined, 

e.g. at the level of 0.5ft, this operation seems 
however to be questionable. 

5 EXPERIMENTS BY NOORU-
MOHAMED 

5.1 Problem 

As a representative benchmark problem, a 
double-edge notched (DEN) concrete 
specimen under combined shear and tension 
was analysed (so-called the Nooru-
Mohammed test [13]). The length and height 
of the element were 200 mm, and the thickness 
was 50 mm (Fig. 1). Two notches with 
dimensions of 25×5 mm2 were located in the 
middle of the vertical edges. During the 
analysed load scenario in calculations, the 
shear force Ps was applied until it reached a 
specified value, while the horizontal edges 
were free. Then the shear force remained 
constant and the vertical tensile displacement 
was prescribed. In the experiment, two curved 
cracks with an inclination depending upon the 
shear force were obtained (at the small value 
of Ps – the cracks were almost horizontal, at 
the large value of Ps – the cracks were strongly 
curved), Fig. 2. Apart from a comparison of 
force – displacement diagrams, the distance d 
defined as the maximum distance between a 
horizontal line between notches and all points 
lying on crack curves was calculated as the 
indicator of a realistic numerical crack 
reproduction. In the experiments, it was 
calculated as an average value of 4 cracks and 
it was equal to 1.6 cm, 3.6 cm and 5.3 cm at 
the shear force 5 kN, 10 kN and 27.5 kN, 
respectively. In all simulations, the following 
elastic constants were assumed in calculations: 
Young’s modulus E=32.8 GPa and Poisson’s 
ratio v=0.2. 

5.2 FE results within elasto-plasticity 

First, the FE simulations with the enhanced 
standard elasto-plastic Rankine model were 

performed. The tensile strength was 
ft=2.4 MPa and the parameter κu=0.02 to fit 

the experimental force – displacement curves. 
The characteristic length was equal to l=2 mm 

 
 

Figure 1: Nooru-Mohamed test [13]: geometry and 

boundary conditions. 

           
 

Figure 2: Nooru-Mohamed test [13]: experimental 
crack pattern at Ps=10 kN. 

 
and the non-locality parameter was m=2. The 
FE-mesh included 8585 quadrilateral 
elements. The obtained FE results are 
presented in Figs. 3 and 4 (the cracks are 
shown via the contours of the softening 
parameter κ). In the case of the force-
displacement diagrams, a very good agreement 
with the experimental data was obtained when 
the shear forces was 5 kN and 10 kN. A 
significant discrepancy was obtained at the 
maximum shear force of Ps=24.5 kN, although 
a compressive tendency under tensile loading 
was properly simulated. 

A crack propagation was satisfactorily 
reproduced in FE analyses. The distance d was 
equal to 2.4 cm, 3.6 cm and 5.6 cm at the 
small, medium and large shear force, 
respectively. The only drawback of calculated 
cracks was the fact that they were too straight 
at the deformation beginning. 

It should be noted that similar satisfactory 
results  were  also  obtained  using an isotropic 
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a) 

 
b) 

 
c) 

 
Figure 3: Force-displacement curves in Nooru-

Mohamed test and in simulations using elasto-plastic 
model at shear force Ps equal to 5 kN (a), 10 kN (b) and 

24.5 kN (c). 

damage constitutive law with non-local 
enrichment [14]. 

5.3. XFEM results 

The following material parameters were 
assumed in simulations: ft=2.3 MPa and Gf=75 
N/m to fit the experimental force-displacement 
curve. The averaging length was taken as 
lav=7.5 mm. To avoid sudden changes of a 
crack direction, a limit of the maximum 
direction change of 10o was imposed. A mesh 
included 6520 3-node triangular elements. 
Figures 5 and 6 present the numerical results. 

 
a) 

 

b) 

 

c) 

 
Figure 4: Smeared crack patterns in Nooru-

Mohamed test and in simulations using elasto-plastic 
model at shear force Ps equal to 5 kN (a), 10 kN (b) and 

24.5 kN (c). 
 

A very good agreement for the force-
displacement curves at the shear forces Ps=5 
kN and Ps=10 kN was achieved. For the 
maximum shear force equal to Ps=25 kN (less 
than in the experiment), large discrepancies 
were observed (although a compressive nature 
of the vertical force under tension was 
properly reproduced). In all tests, two curved 
cracks were calculated with increasing 
curvature with respect to the increasing shear 
force. These cracks were too curved. The 
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a) 

 
b) 

 
c) 

 
Figure 5: Force-displacement curves in Nooru-

Mohamed test and in simulations using XFEM at shear 
force Ps equal to 5 kN (a), 10 kN (b) and 24.5 kN (c). 

 
distance d was equal to 3.0 cm, 4.5 cm and 
7.5. cm at the shear force equal to 5 kN, 10 kN 
and 25 kN, respectively. Thus, the existing 
algorithm for a crack propagation direction 
requires improvements to better match the 
experimental results. The application of other 
formulations did not improve the results.  

Table 1 shows the distances d calculated 
during simulations of the Nooru-Mohamed test 
using XFEM performed by other researches. It 
can be seen that usually the problem with 
Ps=10 kN was investigated only. The obtained 
distances d are more close to the maximum 
value (not to the average one). In general,  

 
a) 

 

b) 

 

c) 

 
Figure 6: Discrete crack patterns in Nooru-

Mohamed test and in simulations using XFEM at shear 
force Ps equal to 5 kN (a), 10 kN (b) and 24.5 kN (c). 

 
Table 1: Calculated distances d (in cm) when 

simulating Nooru-Mohamed test at different shear force 
Ps (5 kN, 10 kN and 27.5 kN) 

 
Author 5 kN 10 kN 27.5 kN 

[12]  4.3  
[15]  4.1  
[16]  4.6  
[17] 3.0 4.5 7.6 
[18] 1.8 2.7  

 
these results confirm our conclusions. Even 
the use of Global Tracking Algorithm [10] 
does not improve the crack pattern [17].  
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6 COUPLED APPROACH EXAMPLE 

As the preliminary example, uniaxial 
tension was numerically analysed. A set of 
diagonally crossed 3-node elements was 
defined with 40 finite elements. The left edge 
was fixed while the horizontal displacement 
∆u=0.1 mm was applied at the right edge. The 
Young’s modulus was equal to 30 GPa and the 
Poisson’s ratio was taken as 0. In a continuum 
model, the tensile strength was ft=2.4 MPa and 
the ultimate softening parameter κu=0.002. A 
linear softening curve was assumed. The 
characteristic length was l=1 cm and the non-
locality parameter m=2. To induce a localized 
zone, the tensile strength was reduced in a 
central zone down to 2.3 MPa. For the XFEM 
model, linear softening was also assumed with 
the fracture energy Gf=87 N/m. This value was 
so scaled in order to obtain the almost identical 
force-displacement diagram in a pure 
continuous or discontinuous approach. 

Figure 7 presents the force displacement 
curves at the different transition softening 
parameters κt. Despite the fact that some 
fluctuations are observed near the transition 
point, all curves are very similar. 

 

 
Figure 7: Calculated force-displacement curves with 

coupled approach and different values of κt. 

7 CONCLUDING REMARKS 

The FE simulations show that both a 
continuous and a discontinuous approach are 
able to simulate curved cracks in concrete 
elements. A very good agreement was 
obtained between numerical and experimental 
force-displacement curves at the shear forces 
of 5 kN and 10 kN. For the experimental 

maximum shear force, some differences were 
observed but a compressive nature of the 
vertical force response was reproduced. All 
constitutive models properly reproduced the 
experimental crack pattern in the experiment 
by Nooru-Mohammed. When analysing the 
crack trajectory results, a continuous approach 
was more realistic than XFEM. 

Currently, some verification procedures and 
improvements of the defined coupled model 
are performed using the isotropic damage 
constitutive law with non-local softening and 
XFEM is under development. The choice of a 
transition point between continuous and 
discontinuous displacements will be 
numerically analysed and FE results will be 
directly compared with experimental results of 
measured displacements on the surface of 
notched concrete beams under 3-point bending 
using a digital correlation image (DIC) 
technique [19]. 
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