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Abstract: The paper deals with numerical simulations oftfree in concrete using a continuous,
discontinuous and coupled continuous-discontinwgmusstitutive model. In a continuum approach,
cracks were treated in a smeared sense with amo-glstic constitutive law with Rankine
criterion. To ensure mesh-insensitive results, ategral non-local theory was applied.
Alternatively, cracks were described as displacenmemps using the eXtended Finite Element
Method (XFEM). A coupled model of these two forntidas was also proposed. Some benchmark
tests were performed.

1 INTRODUCTION defined along element edges. The modern ones
Modelling of quasi-brittle materials like allow for considering cracks in the interior of

concrete is demanding task due to the Ioresencefinite elements using embedded discontinuities

loading, a region with several micro-cracks is [1] based on a concept of the partition of unity.
discrete macro-cracks. There exist two basic N describing strain localization phenomena,

approaches to simulate cracks in solid bodies. but they cannot properly capture the crack

description. The material can be described Models, on the other hand, can handle macro-

using e.g. elasto-plastic, damage mechanics orCracks, but they cannot describe localized
coupled constitutive laws. These formulations ZONes. A combination of a continuous and
include softening, so they have to be equipped discontinuous approach enables to capture a
with a characteristic length of microstructure full fracture process. Such coupling can be
to preserve the well-posedness of the boundary done in several ways, e.g. the latest approaches
value problem. It can be achieved by means of cOmbine XFEM with implicit gradient [2] or
e.g. micro-polar, non-local or gradient integral-nonlocal [3] isotropic damage models.
theories. Alternatively, a crack can be regarded Wells et al. [4] combined XFEM with the

as a discrete macro-crack with a displacement Peérzyna viscoplastic model. . .
jump (by omitting a micro-crack phase). The The paper presents FE _results obtained with
oldest solutions used interface elements @ continuous elasto-plastic model and non-
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local softening and a discontinuous XFEM
approach. A coupling formulation between
these two models was also proposed.

2 CONTINUUM CONSTITUTIVE
MODEL

An elasto-plastic constitutive law with
standard Rankine yield criterion was used

(1)

where g, ,,— maximum principal stresgj, —

tensile yield stress and— hardening/softening
parameter. The associated flow rule was

f = Umax _Ut (K)'

assumed. To define softening under tension, a

curve proposed by Hordijk [5] was applied

7, ()= ft((1+(ak)3)exp(A2K)—A3Ki] 2)

u

with «, — ultimate value of the softening

where r — distance between pointd, —
characteristic length of the microstructure.

In FE-simulations an approximated method
was used to evaluate non-local quantities. In
the given integration point, the influence of its
neighbours was determined using the values
from the previous iteration. It enabled us to
simplify calculations and to preserve locality
of plasticity algorithms.

3 DISCONTINUOUS APPROACH

To describe displacement jumps in
continuum, the eXtended Finite Element
Method (XFEM) was chosen. It is based on
the Partition of Unity (PUM) and it allows for
defining cracks across finite elements. It is
achieved by adding locally extra known terms
to a standard FE displacement approximation.

The formulation used follows (with some
slight modification and improvements) the

parameter at the non-zero vyield stress and 9eneral idea presented by Wells and Sluys [8]

constant#\;, A, andAs are defined as

A= A=-= A=(rexdl-c,) (3)
with the coefficients;=3.0 andc,=6.93.

To obtain mesh-objective results within
continuum constitutive models including
material softening, an integral non-local theory
was used as a regularisation technique [6]. In
plasticity, rates of the softening parameter d
were treated non-locally according to
Brinkgreve [7]

dz(x) = (1- m)dk(x)+md&(x) (4)

with

(| x - &)dx(£)ag
L%QIX _‘f")df |

where x - coordinates of considered (actual)
point, £ — coordinates of the surrounding
points, m — non-locality parameter (it should
be greater than 1). The weighting function
(Gauss distribution) was defined as

1 i
ao(r)—me ,

d&(x) = L (5)

(6)

based on the so-called shifted-basis
enrichment [9] to describe a displacement field
with discontinuous jumps. In the initial
continuum body, a linear elastic constitutive
law was assumed. A new crack could be
activated or an existing crack could propagate,
if the standard Rankine’s criterio@fy > f;)
was fulfiled at least in one point of the
element at the front of the crack tip. A new
segment was added to cracks with a new crack
tip located at the element edge.

To find a direction of the crack propagation,
the direction of the crack extension was
assumed to be perpendicular to the direction of
the maximum principal stress. To smoothen
the stress field around the crack tip, the

average stresses was used for determining
the crack direction according to Wells and
Sluys [8]

(7)

whereV - semicircle domain at the front of the
crack tip,w — weight function assumed as

r.2
exr{—T:Vj (8)

c =jaWdV,
\%

1
O s

av
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with |5, as the averaging length related to the direction, a linear relationship between a
size of finite elements (not equivalent with a displacement jump and traction was defined
characteristic length of microstructure). In the with the stiffnesds.

research literature, more advanced algorithms

can be found. Oliver et al. [10] formulated so- 4 COUPLED NUMERICAL APPROACH

called global tracking algorithm. — The A coypled model enables to simulate both the
propagation directions of all cracks Wwere ¢reation of localised zones of deformation and
determined globally by solving a stationary ihe eyolution of discrete cracks. During the

anisotropic heat conduction problem. Mo€s first phase, the elasto-plastic constitutive law
and Belytschko [11] assumed that cohesive yescribed in Section 2 was used. If the

tractions had no influence on the crack
propagation direction and used the maximum
circumferential stress criterion from Linear

specified value of the softening parameker
was exceeded in any of integration points in
) _ the element at the front of the crack tip, the
Elastic Fracture Mechanics (LEFM). . formulation switched to a cracked element. A

After Wells and Sluys [8], the following o\, crack segment was introduced. The
format' of the loading function within discrete direction of a discrete crack propagatipmas
cohesive laws was assumed determined by (similar as in [4])

1 r? _ _
= - - = EW(E) p(&)av
w(r) (277_)3/2|3 ex;{ 2';} (9) p \'[K( YW(E) (<) (13)

av

with the history parametek equal to the where p — normalized direction from crack
maximum value of the displacement jump tip to the point, w — weight function defined in
[[u)]] achieved during loading. The softening Eaqn. (9). An introduction of a crack segment
of the normal component of the traction vector preserved the stress equilibrium. Therefore
was described using either an exponential cohesive discrete material behaviour was
relationship modified to take into account the initial

f displacement jumps {{™]] and [[uisnit 1.
t =Dt ex;{— tK] (10) These values were determined on the basis on

init

f

the known tractionst™ and t™ at the

n s

or a linear one moment of a crack creation and the defined
relationships in a normal and tangential

t =D, ft[l_ ftKj (11) direction. In other words, XFEM softening in

2G; normal direction started not from the valfje

. eak) but from the smaller valug™. The
whereG; — facture energyp; — correction term (peak) g

defined as initial displacement [{i

1] was also added to

p the softening parametar
D, :l—exy{—df—j (12) The addition of a new crack segment
K introduced also a new barrier in non-local
with the drop factord: [12]. This factor iqteractions (the po_ints lying at the oppositg
improves the convergence under tensile- sides of a crack might not see each other in

compressive load changes. With increasing Pohn-(qucal ?furrlinafll_cr)]ns caustl_ng _the SQ'C?”etd
value ofd;, the termD; approaches 1. During shading effect”). This operation is equivalen

unloading, the secant stiffness was used with alo S_ew goundary Cgrlgl':tl'zol\r;ls In dall ;ou_;l)_lhe_d
return to the origin (damage format). In a gradient damage an model [2]. This

compressive regime, the penalty stiffness in ?ssur_?_ptlofn IS correctt_ for th? cg_se Wthen the
the normal direction was used (depending transition from a continuous to discontinuous

upon the drop factords). In the tangent crack description of takes place at very small

u
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values oft™ . If the transition point is defined,

e.g. at the level of Of5 this operation seems
however to be questionable.

5 EXPERIMENTS BY NOORU-
MOHAMED

5.1 Problem

As a representative benchmark problem, a
double-edge  notched (DEN) concrete
specimen under combined shear and tension
was analysed (so-called the Nooru-
Mohammed test [13]). The length and height
of the element were 200 mm, and the thickness
was 50 mm (Fig.1). Two notches with
dimensions of 285 mnt were located in the
middle of the vertical edges. During the
analysed load scenario in calculations, the
shear forcePs was applied until it reached a
specified value, while the horizontal edges
were free. Then the shear force remained
constant and the vertical tensile displacement
was prescribed. In the experiment, two curved
cracks with an inclination depending upon the
shear force were obtained (at the small value
of Ps — the cracks were almost horizontal, at
the large value dPs — the cracks were strongly
curved), Fig. 2. Apart from a comparison of
force — displacement diagrams, the distatice
defined as the maximum distance between a
horizontal line between notches and all points
lying on crack curves was calculated as the
indicator of a realistic numerical crack
reproduction. In the experiments, it was

100, 100

)74

|r

150

25,
rd

A

A0,
P

2

Figure 1: Nooru-Mohamed test [13]: geometry and
boundary conditions.

Figure 2: Nooru-Mohamed test [13]: experimental
crack pattern a®s=10 kN.

and the non-locality parameter was2. The
FE-mesh included 8585 quadrilateral
elements. The obtained FE results are
presented in Figs. 3 and 4 (the cracks are
shown via the contours of the softening
parameter k). In the case of the force-
displacement diagrams, a very good agreement

calculated as an average value of 4 cracks andWith the experimental data was obtained when

it was equal to 1.6 cm, 3.6 cm and 5.3 cm at
the shear force 5 kN, 10 kN and 27.5 kN,
respectively. In all simulations, the following
elastic constants were assumed in calculations:
Young's modulusE=32.8 GPa and Poisson’s
ratiov=0.2.

5.2FE results within elasto-plasticity

First, the FE simulations with the enhanced
standard elasto-plastic Rankine model were
performed. The tensile strength was

fi=2.4 MPa and the parametgr~0.02 to fit
the experimental force — displacement curves.
The characteristic length was equal4#@ mm

the shear forces was 5 kN and 10 kN. A
significant discrepancy was obtained at the
maximum shear force ¢1=24.5 kN, although

a compressive tendency under tensile loading
was properly simulated.

A crack propagation was satisfactorily
reproduced in FE analyses. The distameeas
equal to 2.4 cm, 3.6 cm and 5.6 cm at the
small, medium and large shear force,
respectively. The only drawback of calculated
cracks was the fact that they were too straight
at the deformation beginning.

It should be noted that similar satisfactory
results were also obtained using an isotropic
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—— FE simulations a)
---- Experiment

Force P [kN]

0 0.05 0.1 0.15 0.2
Displacement » [mm]

b)

—— FE simulations
---- Experiment b)

Force P [kN]

0.1 0.15 0.2
Displacement » [mm]

o
<
o
>

C) 3 4 —— FE simulations
---- Experiment

Force P [kN]

[ [ I
0 0.05 0.1 0.15 0.2

Displacement u [mm)]

Figure 3: Force-displacement curves in Nooru-
Mohamed test and in simulations using elasto-masti
model at shear fordes equal to 5 kN (a), 10 kN (b) and Figure 4: Smeared crack patterns in Nooru-
24.5 kN (c). Mohamed test and in simulations using elasto-mlasti

damage constitutive law with non-local Medelatshear fordeSeq“lf" t?)?’kN (2), 10 kN (b) and
24.5 kN (c).

enrichment [14].

A very good agreement for the force-

5.3. XFEM results displacement curves at the shear forPgsb
The following material parameters were kN and Ps<=10 kN was achieved. For the
assumed in simulation§=2.3 MPa and5=75 maximum shear force equal R=25 kN (less

N/m to fit the experimental force-displacement than in the experiment), large discrepancies
curve. The averaging length was taken as were observed (although a compressive nature
l2=7.5 mm. To avoid sudden changes of a of the vertical force under tension was
crack direction, a limit of the maximum properly reproduced). In all tests, two curved
direction change of fOvas imposed. A mesh cracks were calculated with increasing
included 6520 3-node triangular elements. curvature with respect to the increasing shear
Figures 5 and 6 present the numerical results. force. These cracks were too curved. The
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Figure 6: Discrete crack patterns in Nooru-
Mohamed test and in simulations using XFEM at shear
force P equal to 5 kN (a)

Table 1: Calculated distanceass(in cm) when
simulating Nooru-Mohamed test at different sheacdo

Author
[12]
[15]
[16]
[17]
[18]

f other

ion o

icat

ed only. The obtained the use of Global Track

t

ts to better match the
. The appl

iga

t

lations of the Nooru-Mohamed test

XFEM performed by other researches. It
can be seen that usually the problem with these results confirm our conclusions. Even

tal results
formulations did not improve the results.

Figure 5: Force-displacement curves in Nooru-
experimen

Mohamed test and in simulations using XFEM at shear
forcePs equal to 5 kN (a), 10 kN (b) and 24.5 kN (c).

requires improvemen

ing simu

Table 1 shows the distanceéscalculated

using
distancesd are more close to the maximum does not im

7.5. cm at the shear force equal to 5 kN, 10 kN
value (not to the average one). In general,

and 25 kN, respectively. Thus, the existing
algorithm for a crack propagation direction

distanced was equal to 3.0 cm, 4.5 cm and

P=10 kN was inves

dur
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6 COUPLED APPROACH EXAMPLE

As the preliminary example, uniaxial
tension was numerically analysed. A set of
diagonally crossed 3-node elements was
defined with 40 finite elements. The left edge
was fixed while the horizontal displacement
Au=0.1 mm was applied at the right edge. The
Young’'s modulus was equal to 30 GPa and the
Poisson’s ratio was taken as 0. In a continuum
model, the tensile strength wis2.4 MPa and
the ultimate softening parametgf=0.002. A
linear softening curve was assumed. The
characteristic length wds1 cm and the non-
locality parametem=2. To induce a localized
zone, the tensile strength was reduced in a
central zone down to 2.3 MPa. For the XFEM
model, linear softening was also assumed with
the fracture energ§=87 N/m. This value was
so scaled in order to obtain the almost identical
force-displacement diagram in a pure
continuous or discontinuous approach.

Figure 7 presents the force displacement
curves at the different transition softening
parametersk;. Despite the fact that some
fluctuations are observed near the transition
point, all curves are very similar.

t . — K =02x10"3
204 | -—-- /@t:O.6><10:3
| - k= 1.2x 1073
Z 15|
Dﬂ 1
5 107/
5
= 5
0 I I I I ™
0 002 004 006 008 0.1

Displacement [mm)]

Figure 7: Calculated force-displacement curves with
coupled approach and different valuescof

7 CONCLUDING REMARKS

The FE simulations show that both a
continuous and a discontinuous approach are
able to simulate curved cracks in concrete
elements. A very good agreement was
obtained between numerical and experimental
force-displacement curves at the shear forces
of 5 kN and 10 kN. For the experimental

7

maximum shear force, some differences were
observed but a compressive nature of the
vertical force response was reproduced. All
constitutive models properly reproduced the
experimental crack pattern in the experiment
by Nooru-Mohammed. When analysing the
crack trajectory results, a continuous approach
was more realistic than XFEM.

Currently, some verification procedures and
improvements of the defined coupled model
are performed using the isotropic damage
constitutive law with non-local softening and
XFEM is under development. The choice of a
transition point between continuous and
discontinuous  displacements  will  be
numerically analysed and FE results will be
directly compared with experimental results of
measured displacements on the surface of
notched concrete beams under 3-point bending

using a digital correlation image (DIC)
technique [19].
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