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Abstract: Modelling fracture in concrete or masonry is known to be problematic regarding the 

robustness of iterative solution procedures and, the use of non-iterative methods (or that minimize 

the use of iterations) in quasi-brittle materials is now under strong development, due to the necessity 

to obtain effective results in finite element analysis [1, 2] where strong non-linearities emerge that 

are otherwise unwieldy to model. 

 In the proposed lecture, two new methods designated as Non-Iterative Energy based Method 

(NIEM) and Automatic presented in [1, 3] are applied with extension to modelling damage-plastic 

behaviour. The new methods combine an incremental-total procedure with the preferential use of 

incremental steps, switching to the total approach only at critical bifurcation points. The 

development of the load-unloading abilities is allowed by these incremental/total methods, which 

take advantage of keeping the material’s stress/strain memory due to the preferential use of an 

incremental procedure. A new approach to the unload-load cycles is used in the scope of a non-

iterative procedure, which will mitigate the numerical difficulties inherent to cyclic loading. 

 The formulation for both methods for structures with both softening and hardening behaviour is 

presented and a structural example where the numerical results are compared with experimental 

results. 
 

1 INTRODUCTION 

 The use of total approaches based on a 

secant stiffness allows for the correct 

modelling of concrete and masonry structures 

under monotonic solicitation [2]. However, in 

the total approach only secant unloading is 

assumed (path 4 in Figure 1) and reloading 

will recover the position on the material 

envelope using the same secant stiffness. This 
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is a simplification of the real behaviour, since 

there is no evaluation of the residual strains or 

crack openings.  

 In fact, modelling the behaviour of 

structures under reversed loading, such as 

cyclic actions or a load decrease on a given 

structural member, is not correctly simulated 

by the secant unloading-reloading (damage) 

constitutive law; instead, plastic, plastic-

damage (Figure 2) or hysteretic laws should be 

adopted. 

 

Figure 1: Stress-displacement paths 

 In Figure 2, 1D representations of the three 

types of unloading-reloading laws adopted 

with the new non-iterative methods are 

presented for softening. In this figure, d refers 

to an isotropic damage parameter, that easily 

translates the current stiffness coefficient of 

any integration point i as a function of the 

initial elastic stiffness D
e
:  
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 And is used to define the material 

stress/strain history. The plastic-damage 

parameter dh  (Figure 2 c)), is a numerical 

parameter that takes into account the residual 

strain/displacement jump (dh ≤ d).  

 The unloading-reloading cycles are 

approximated with a linear branch, initially 

defined by the elastic stiffness, with the 

possibility of evolving according to the plastic-

damage dh function. In the following, D refers 

to the tangent constitutive modulus whereas K 

is the secant modulus. 

 Experimentally, steel reinforcement 

exhibits unloading-reloading behaviour which 

is modelled by means of an elastic branch, 

since the reinforcing steel is assumed as an 

elastic-plastic material. 

 As for concrete, this assumption consists on 

a simplification in both the compressive and 

the tensile stress states, since the unloading-

reloading cycle is associated with an increase 

in damage. Under compression, this 

simplification is possible on low levels of 

post-peak damage and for slow unloading-

reloading cycles, since damage increase also 

depends on these factors. Another 

simplification is to substitute the hysteretic 

cycles by linear elastic-damage branches like 

the examples in Figure 3. 
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a) Damage       b) plastic           c) plastic-

damage 

Figure 2: Unloading behaviour 

 All above referred models, simplified or 

not, cannot be implemented in a pure total 

approach. Nevertheless, the introduction of 

new methods combining an incremental 

procedure with a total approach opened the 

possibility of modelling the unloading 

behaviour taking into account residual 

deformations. 

 
 

a) tensile test b) compressive test 

Figure 3: Experimental cyclic loading results and 

damage branch simplification (adapted from [4]) 
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2  NON-ITERATIVE PROCEDURES 

 The new non-iterative procedures proposed 

in [1] use the combined incremental and total 

approaches. This combined procedure allows 

for the proper tracking of the material loading 

history, conversely to purely total methods. 

Furthermore, information obtained from the 

previous incremental solution is used to 

predict the constitutive law adopted in the total 

approach. In this way: i) there is no need to 

adjust the material parameters to ensure mesh 

objectivity; and ii) the consistency condition is 

satisfied.  

2.1 Solution control 

 In the incremental approach, whenever a 

bifurcation point is reached, the path choice is 

based upon the signal of the particular load 

increment leading to the largest incremental 

energy dissipation. It is assumed that, for a 

load increment applied on a structure, the 

corresponding evolution on the stress-strain 

law of the material point should follow the 

path which would release the largest amount 

of energy. Using an incremental approach, the 

second order energy release in a finite element, 

G , is given by: 

,

d

T T

dG d d
 

        ε σ w t

 

(2) 

 where  is the bulk and d stands for all 

discontinuities,  and  are the strains and the 

stresses in the bulk, respectively, and w and t 

are the jump displacements and the tractions, 

respectively, at the discontinuities. 

 Since multilinear constitutive relations are 

adopted, a critical load factor ( crit ) is first 

evaluated in a trial step, in order to reach the 

nearest material point connecting two linear 

branches. Afterwards, the true step is enforced 

such that: 

, ,true j crit trial jΔP ΔP
 

(3) 

2.2 Critical bifurcation points 

 When bifurcation points are reached on the 

material law, two possibilities occur: increase 

of damage or unloading. In Figure 4, four 

paths on the uniaxial traction-displacement 

curve are displayed: path 1 corresponds to 

increase of damage, paths 2 and 3 are 

unacceptable since they violate the material 

law, and path 4 corresponds to secant 

unloading. 
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Figure 4: 1D representation of possible traction-jump 

paths 

 Whenever a material point undergoes 

unloading, memory is kept until it reloads back 

to the envelope. When the current state is 

unloading this point is never critical except for 

preventing overlapping of crack faces but, 

when reloading occurs, the load factor is 

estimated, similarly to what is done for all 

points that remain on the envelope. When 

several nonlinearities arise during the analysis 

due to the existence of many bifurcation 

points, path searching techniques must be 

applied. If no solution is obtained, i.e., if no 

single admissible path is obtained, a transition 

to the total approach is made. This aspect is 

common to both methods herein presented. 

2.3 Automatic method 

 In the automatic method, whenever a 

critical bifurcation point is reached, it becomes 

impossible to incrementally determine the 

effective path, a total method is adopted in 

which the secant material stiffness is used. 

This secant stiffness is then reduced by a 

predefined factor as done in the Sequentially 

Linear Approach (SLA) developed by Rots[2] 

(Figure 5):  
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Figure 5: 1D example of the Automatic method 
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 where step j is the current (valid) step and 

traction ‘t’ and displacement jumps ‘w’ are 

defined in Figure 5. In the following step j+1 

the secant stiffness is reduced, using the 

standard SLA, such that:  

0t
red j

SL

f
t t

N
   

 

(5) 

 where tred is the new stress on the envelope, 

ft0 is the tensile strength and NSL is the 

predefined number of SLA reduction steps. 

The next step is performed similar to the SLA, 

in which usually only one of the points will 

become critical and reaches the original 

envelope. All other points will remain on the 

current secant path. In the following step the 

incremental approach is recovered using the 

tangent stiffness matrix D.  

 Note that the secant stiffness is always 

adopted in the total approach, which has a 

direct correspondence to the adopted envelope. 

In elastoplastic materials it is also possible to 

enforce the correct unloading path using the 

same total approach; in this case, the secant 

stiffness is only adopted to reach new 

equilibrium positions on either: i) the loading 

surface or ii) the unloading surface. More 

details can be found in [1]. 

2.4 Non-Iterative Energy based Method 

(NIEM) 

 In the automatic method the stepwise 

decrease of the secant stiffness must be 

defined a priori, without a clear physical 

meaning. In order to avoid this situation a new 

method, designated NIEM, was introduced, 

which allows for switching between the 

incremental and the total approach without 

imposing a predefined number of reductions of 

the secant stiffness.  

 In the trial step (Figure 6), all non-critical 

points are treated in the usual way, such that a 

critical load factor λcrit is computed. The goal 

of this step is solely to estimate the damage 

level that would be reached if this was a valid 

step; in this way, the secant stiffness update 

for the next step will emerge from this 

prediction. Nevertheless, since on step j some 

integration points would follow invalid paths, 

this step is null. The secant stiffness Kj+1 is 

estimated according to:  

1
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Figure 6: 1D example of the NIEM 

 Thus, in step j no change occurs; only the 

evaluation of the new secant stiffness is 

performed, which will be adopted in step j+1 

using a total approach. In the following step 

the incremental approach is recovered, similar 

to the automatic method. More details can be 

found in [1]. 

3 FORMULATION FOR SOFTENING 

BEHAVIOUR 

 In the following, mode-I fracture is 

assumed, although adaptation for mode-II 

fracture is straightforward.  
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 The modelling of non-secant unloading 

presents no problem in an incremental 

approach as long as no critical bifurcation 

points are attained. However, when a critical 

bifurcation point is found, a transition to the 

total approach is made. This is a consequence 

of the formulation presented in [1], where it 

was noticed that an inversion on the jump 

increment over the softening branch leads to 

an inadmissible path: a null step is adopted 

and a transition to a secant stiffness matrix 

occurs, similarly in both new methods.  

 In Figure 7, this inadmissible path occurs in 

step u, in which an unloading branch is 

defined between points Ou and k, with stiffness 

Du. The initial stiffness D1 is assumed elastic. 

However, in the scope of a discrete crack 

approach, the initial branch usually 

corresponds to a penalty function. In this case, 

D1 is limited to an acceptable maximum value 

(taken as 10
3
 N/mm

3
 in all the examples 

presented). Next, the unloading stiffness Du is 

defined according to: 

1(1 )u hD d D   (7) 

 where dh is the plastic-damage scalar 

function (dh  d). 
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a) loading situation b) unloading situation 

Figure 7: Softening curve: definition of the unload 

branch and determination of load situation 

 Similarly to the usual NIEM and Automatic 

formulations, a secant stiffness is defined for 

the following step. In Figure 7, the secant is 

defined by traction update, dividing the tensile 

value by Nu. This reduction parameter Nu will 

correspond to NSL when using the Automatic 

method or a large value (say 50 to 100) when 

using the NIEM. In this way, a non-convergent 

cyclic behaviour is avoided. Furthermore, the 

resulting increase in damage is in agreement 

with the experimental evidence.  

 In the following total step u+1, the 

previously estimated secant stiffness value is 

used and three situations may occur: 

i) the integration point is critical and 

reloads back to the envelope at point A. 

In this situation, in the following steps 

the usual incremental algorithm is 

followed over the original envelope; 

ii) the integration point is not critical and 

is positioned beyond the unloading 

branch (point  in Figure 7 a)), 

meaning that the effective behaviour of 

this integration point is loading and so, 

it will also reload back to the envelope 

at point A in future steps;  

iii) the integration point is not critical and 

lies before the unloading branch (point 

 in Figure 7 b)); in this case, it is 

assumed that an effective unloading 

situation has occurred and a new 

envelope is generated. 

 The new envelope in iii) is defined by the 

intersection of the unloading branch with the 

original envelope, originating a ‘cut’ in the 

abscissa, eliminating the existing original 

surface before point k (Figure 8). In this way, 

the computational algorithm previously 

generated for the two new methods can be 

easily extended to the present formulation by 

supressing the branches before point k and 

adding the new branch. 

w

k

supressed area of the diagram

new branch

OuO  

Figure 8: Softening curve: example of the insertion of 

an unload branch in a multilinear softening envelope 

 In the steps following step u+1, the new 

envelope is assumed for this integration point 

and several situations may develop until point 

k is again reached (in reloading case), either 
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due to the behaviour of this particular 

integration point alone or by influence of the 

remaining ones. The first situation occurs 

when the current state is short of (point  in 

Figure 8 b)) the intersection between the 

current secant and the unloading branch (point 

B). In this case the secant stiffness is followed 

in both unloading and loading, in the interval 

between the origin O and the limit point B. If 

unloading to the origin occurs, crack closure is 

assumed; conversely, if point B is reached, a 

change in stiffness from ku+1 to Du is adopted 

and the new envelope is assumed. Afterwards, 

when the current stress state is on the 

unloading branch (point  in Figure 9a)), the 

incremental approach is followed similarly to 

the original formulation of the method.  

 Loading and unloading cases are allowed 

on the new first branch of the transformed 

envelope and, in loading cases, the path will be 

followed incrementally until the next vertex on 

the linearised curve is found (Figure 9 a)) or, if 

an unloading situation occurs, the load factor 

is computed towards point Ou. In further total 

steps, until point k is reached, the load factor is 

computed such that the new envelope is aimed 

at the new elastic branch (point C in Figure 9 

b)). The location of point C is estimated using 

the original NIEM algorithm. 
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a) unloading/reloadi

ng on the 

unloading branch 

b) reloading 

situation in a total 

step:  

Figure 9: Softening curve: incremental/total algorithm 

with adapted new envelope 

 In the Automatic method the estimation of 

the position of point C is performed by using 

the usual stepwise secant stiffness update. 

Similarly to the first total step after this 

stiffness update, the secant stiffness Kj+1 will 

be followed until intersection with the 

unloading branch occurs. 

4 DAMAGE PARAMETERS 

 If non-secant unloading is assumed, apart 

from the scalar damage value d previously, an 

additional parameter (du) is adopted. Thus, 

throughout the whole process the value of  d is 

fixed, keeping the memory of the envelope 

stress state, whereas du is a temporary variable 

used for the definition of the secant stiffness, 

until full reloading is achieved. After reloading 

back to the envelope, d will then be normally 

updated with damage increase and du will be 

cleared until another unloading cycle occurs. 

This way, in Figure 10, the fixed damage value 

of the unloading point is:  

1
k

k e

k

t
d

D w
   

 

(8) 

 And, the damage of the subsequent total 

step will be: 

, 1
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u A e

k u

t
d

D w w
 


 

 

(9) 

 with, wu being the jump increase due to 

the enforced secant update. 
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Figure 10: Softening curve: evaluation of the damage 

parameters 

 As previously stated, if there is not an 

effective unloading situation, the algorithm is 

abandoned and the original envelope will 

again be followed; for instance, when point A 

is reached, the material damage is made equal 

to the plastic-damage parameter at point A. 
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,u Ad d  (10) 

5 FORMULATION FOR HARDENING 

BEHAVIOUR 

 On Section 2, the formulation used for 

unloading/reloading was presented in the 

scope of the softening behaviour. Now, the 

extension to hardening behaviour is almost 

straightforward. First, in hardening there is no 

need to prevent an overestimated initial 

stiffness value as done in the discrete crack 

approach. Thus, the initial modulus D1 is the 

Young’s modulus (D1 = De). Moreover, the 

secant modulus is not updated by means of 

stepwise stress update, but, by stepwise strain 

increase or stiffness reduction, which are more 

suitable procedures as explained in [1]. The 

reference points previously used in the 

examples are now adapted to hardening curves 

in Figures 11 to 14. 

O

1D

uD

k





uK

B

A

u+1K

Ou



 O

1D

uD

k





uK

B

A

u+1K

Ou



 

a) loading situation b) unloading 

situation 

Figure 11: Hardening curve: definition of the unload 

branch and determination of load situation 

 The procedure adopted for the definition of 

the new envelope is similar to the previous 

one, supressing the area preceding point k. 

O

k



Ou

of the diagram
supressed area

new branch

 

Figure 12: Hardening curve: example of the insertion of 

an unloading branch in a multilinear softening envelope 

 In Figure 13 the value  is estimated 

according to the additional trial step in the 

NIEM, such as implemented with softening; 

when using the Automatic method it must be 

evaluated by means of stepwise strain increase 

or stiffness reduction, obtaining the associated 

parameters from the linear branch. 
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a) load/unloading 

over the branch 

b) unloading 

situation 

Figure 13: Hardening curve: incremental/total 

algorithm with adapted new envelope 

 Under hardening behaviour, the variable 

plastic-damage parameter du is estimated 

similarly to the presented before, by using the 

original envelope for evaluation (Figure 14). 

In this case, du is computed from the strain 

variation resulting from the intersection 

between the secant value of the current reload 

situation and the original envelope u. 
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Figure 14: Hardening curve: Evaluation of the damage 

parameters 

 In Figure 15 a flowchart of the 1D 

algorithm is presented, where the previously 

reference points and indexes are used. The 

scheme is presented using a stress-strain 
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referential but it is easily converted to a 

traction-jump procedure. 

6 STRUCTURAL EXAMPLE 

 In this Section, a structural example is 

presented in order to validate the proposed 

methods and discuss the different options 

introduced for computer analysis. Bilinear 

finite elements are used for the simulation of 

the bulk, whereas cracking is simulated using 

strong embedded discontinuities [5, 6]. Thus, 

cracks are as discontinuities embedded inside 

the finite parent element inserted when the 

tensile strength ft0 is attained. 
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Figure 15: Flowchart with non-secant 1D unload 

algorithm 

 The displacement jumps are obtained at 

additional degrees of freedom, located at the 

embedded crack. In this model, these degrees 

of freedom are global, giving rise to 

continuous displacement jumps and tractions 

across element boundaries. The use of 

embedded discontinuities allows for the 

simulation of cracking on quasi-brittle 

materials, with the advantage of avoiding 

remeshing. The use of this widespread 

technique has been applied to concrete in 

tension [6], under strong compression and to 

splitting failure. This type of crack simulation 

can also be adopted in other materials, like 

masonry. 

 As for the compressive behaviour of 

concrete, its modelling can become rather 

complex, since nonlinearities are present 

practically from the beginning of the loading 

and the material undergoes softening after 

peak load. Crushing is simulated using a 

simplified elasto-plastic model which limits 

the compressive stresses. It was found in 

previous analyses [7] that the consideration of 

a nonlinear pre-peak relationship does not 

seem particularly important on tests where 

concrete crushing is not the dominant failure 

mode. Nevertheless, the post-peak softening 

response may induce less bearing capacity 

than the assumed perfect plastic behaviour. 

The main reasons why the compressive 

softening behaviour is not adopted here are: 

i) the lack of experimental evidence, 

which supports the definition of a 

fracture energy under compression as a 

material parameter; 

ii) mesh size inobjectivity, which is a 

consequence of modelling softening 

within a continuum, unless 

regularisation approaches are used, 

which lie outside the scope of the 

present analysis. 

 In 2005, a study was presented with 

reinforced concrete beams, applying the (SLA) 

to models where cracking was simulated using 

strong embedded discontinuities. This study 

was summarised in [7]. These models were 

based on a testing campaign, and had the goal 

of simulating the behaviour of several 

experimental tests performed in reinforced 

concrete beams, loaded until a previously 

defined damage level. After this initial 

damage, the existing cracks were repaired by 

epoxy glue injection, with posterior bonding of 

a steel plate consisting of additional external 
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reinforcement. Next, the beams were subjected 

to additional loading until failure. 

 This test campaign, included the testing of a 

reference beam, which was loaded until failure 

with three unloading cycles. The aim of the 

present example is to illustrate the use of the 

unloading-reloading algorithm presented on 

the previous sections. 

 The model is a four point bending 

reinforced concrete beam (Figure 16) 

subjected to circular bending at the central 

span (no shear) and it is composed of concrete 

with fc = 29.67 N/mm
2 

, ft0 = 2.4 N/mm
2
, GFI = 

0.056 N/mm. Steel reinforcement is composed 

of two 10 mm bars on the bottom face and two 

6 mm bars on the top face. Stirrups were used 

on the experimental tests, but they were not 

modelled in the finite element mesh. 

P

900
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5

2 Ø 10

2 Ø 6

300 P

900

300

 

Figure 16: Unloading-reloading cycles in a reinforced 

concrete beam: structural scheme, load and boundary 

conditions (200 mm width, dimensions in mm) 

 The finite element model is a structured 

mesh (Figure 17), composed of 360 bilinear 

elements, with a mode-I bilinear softening law 

(w1 = 0.029 mm and ft1 = 1.84 N/mm
2
, wult = 

0.13 mm), Cracking is modelled by a discrete 

crack approach, using strong embedded 

discontinuities [5]. The traction-displacement 

jump relationship is characterised by a mode-I 

bilinear softening law; the shear stiffness is 

reduced proportionally to zero as mode-I 

softening evolves until a stress-free crack is 

obtained. Unloading-reloading cycles in 

softening are modelled by means of a linear 

branch with a stiffness equal to 10
3
 N/mm, and 

the elastic stiffness in hardening. 

 

Figure 17: Unloading-reloading cycles in a reinforced 

concrete beam: finite element mesh 

 A multi-linear behaviour law for concrete 

under compression is adopted, which consists 

of the linearisation of the MC90 [8] concrete 

behaviour function:  
2

1 1 1

1

1 1

, for

1 2

ci c c

c c c

c c i c
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c c
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E
f

E
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(11) 

where:  

 1cE
 

is the initial tangent modulus 

(32000 N/mm
2
);  

  
/ 0.0022ci cE f ; 

  c  is the compression strain; 

 1 0.0022c    is the strain value 

associated with fc. 

 Conversely to the MC90, no softening 

behaviour is defined after c1. As previously 

stated, this simplification is introduced in 

order to avoid the corresponding mesh size 

dependency. Thus, the adopted envelope 

approximates the MC90 function until the 

strain value c1 is attained, after which, a pure 

plastic behaviour is adopted (Figure 18). 

Unloading-reloading follows the elastic 

branch, parallel to the initial tangent modulus. 

 

Figure 18: MC90 and adopted compression models for 

concrete under compression 

 Steel behaviour is modelled, by means of 

72 Linear elements, with an elasto-plastic law 

(fy  = 510.0 N/mm
2
, E = 205000 N/mm

2
). The 

unloading-reloading stiffness is the elastic 

stiffness. Bond-slip is modelled using 72 
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interface elements under mode-II fracture, 

using the MC90 local bond slip model. 

 Experimentally, the beam was loaded until 

failure with 3 cycles; the first one until 

10.0 kN, proceeded with unloading and 

reloaded until the second loading stage of 

15.0 kN. After this second stage, the beam was 

unloaded and reloaded until 19.6 kN, after 

which the load was kept fixed for a certain 

period in which creep developed. Since creep 

is not simulated here, the plateau on the charts 

of Figures 19 and 20 is artificially introduced 

by adding the corresponding displacement. 

 The load-displacement curve, using the 

Automatic method, follows accurately the 

experimental curve, with the two first 

unloading branches slightly less stiff than the 

experimental unload-reload branches. Using 

the NIEM the curves are smoother, with 

similar unloading-reloading behaviour. The 

results of both methods do not simulate the 

damage increase due to the unloading-

reloading loops since they were not modelled. 

However, the good agreement between the 

numerical and the experimental unloading 

branches and the lack of numerical difficulties 

opens the possibility of modelling more 

complex cycles.  

 

Figure 19: Unloading-reloading cycles in a reinforced 

concrete beam: load-displacement curve obtained using 

the Automatic method.  

 The deformed shapes and crack pattern are 

presented in Figures 21 to 23. Crack 

localisation is somewhat different between the 

methods. At failure, a diagonal crack is formed 

due to lack of stirrups, but the deformation 

limit of 12 mm prevented shear failure. On 

these figures the circles represent the location 

of the analysed integration points presented 

below. 

 

Figure 20: Unloading-reloading cycles in a reinforced 

concrete beam: load-displacement curve obtained using 

the NIEM method. 

 

Figure 21: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the NIEM at the initiation of 

the first unloading stage = 3.06 mm (displacements 

amplified 5 times, crack width amplified 25 times)  

 

Figure 22: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the NIEM at failure stage = 

12.00 mm (displacements amplified 5 times, crack 

width amplified 25 times)  

 In order to visualize the evolution of the 

concrete behaviour, the obtained stress-strain 

diagrams are plotted in Figure 24 for the bulk 

in the most compressed finite element, 

whereas in Figures 25 and 26 the traction-

jump relations at the tip of the most opened 

crack are presented. For bulk compression the 

plotted envelope is obtained with the NIEM, 
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which is similar to the one obtained with the 

Automatic method.  

 

Figure 23: Unloading-reloading cycles in a reinforced 

concrete beam: crack superposition in the deformed 

finite element mesh using the Automatic method at 

failure stage = 12.00 mm (displacements amplified 5 

times, crack width amplified 25 times)  





unloading stages

 

Figure 24: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most 

compressed concrete element using the NIEM. 

 Similarly, on the tensile softening diagrams, 

the unloading stages are clearly identifiable, 

and due to the low value of the limit traction 

jump, only one or two stages occur on each 

fracture integration points. In the cases 

presented in Figures 25 and 26, the last 

unloading stage occurred after the analysed 

integration reached full softening, thus, the 

unload steps followed the horizontal (zero 

stiffness) branch. The second unloading stage 

led to negative traction values, but no crack 

closure is obtained. 

w

ft0

wult

unloading stages

total steps

incremental steps

 

Figure 25: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most opened 

crack tip element using the Automatic method. 

t

w
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unloading stages

total steps

incremental steps

 

Figure 26: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most opened 

crack tip element using the NIEM. 

 In the steel elements Figure 27, due to the 

use of an elastoplastic behaviour law, the two 

first unloading stages occur while the elastic 

branch is being followed. In this way, it is only 

possible to visualise one unloading branch 

emerging from the plastic horizontal stage. 

Again, the envelope is naturally retrieved after 

reloading.  

unloading stage

 

Figure 27: Unloading-reloading cycles in a reinforced 

concrete beam: material envelope of the most yielded 

steel element using the NIEM method. 
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 It can be concluded that the proposed 

algorithm is valid and satisfactorily depicts the 

real unloading-reloading situations, both in 

hardening and in softening behaviour. 

Moreover, the return to the state previous to 

unloading is guaranteed by means of the 

damage variables defined in Section 3.  

 Since, in total steps, the material points may 

lays on the secant branches temporarily, before 

attaining the unloading/reloading branches, a 

softer unloading behaviour can be obtained. A 

new procedure is now being implemented to 

overcome this issue. 

7 CONCLUSIONS 

 In models in which no critical bifurcation 

points arise, the following conclusions can be 

drawn: i) the use of an incremental approach 

with linearised curves has proven suitable in 

presented example; and ii) the energy solution 

control effectively allows for the correct 

loading path choice. 

 Both new methods led to good result. The 

NIEM shows a good agreement with the 

material laws when compared to the Automatic 

method with an acceptable increase in 

computing time. None of the presented 

methods is mesh-dependent in the scope of 

discrete crack approach[1].  

 The possibility of both methods storing the 

material stress/strain or traction/jump history, 

by means of a damage parameter, allows a 

perfect correlation between total (secant) and 

incremental (tangent) approaches, during a 

complete analysis, thus opening the possibility 

to the modelling of other type of unloading 

paths (other than secant), such as elastic and 

damage-plastic unload or even hysteretic 

cycles, since the coordinates of the return point 

on the surface are easily obtained by means of 

the current damage value. The presented laws, 

effectively model cyclic behaviour on both 

hardening and softening, allowing the use of a 

damage prediction between unloading-

reloading situations. Finally, the two methods 

were capable of good predictions of the 

experimental results, conversely to the classic 

iterative methods which often fail to converge. 
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