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Abstract: The paper presents results of FE simulations of the concrete behaviour under dynamic 
loading at the different strain-rate. A continuum elasto-plastic constitutive model was used. 
Viscosity, non-locality and inertial terms were included. Numerical results of strength during 
uniaxial compression and uniaxial tension were compared with corresponding laboratory tests and 
CEB recommendations. Some preliminary own dynamic test results on concrete beams under three-
point bending were also shown.  
 

1 INTRODUCTION 
A fracture process is a fundamental 

phenomenon in quasi-brittle materials like 
concrete [1]. It is subdivided in general into 2 
main stages: appearance of narrow regions of 
intense strain deformation with a certain width 
(including micro-cracks) and occurrence of 
macro-cracks. Within continuum mechanics, 
strain localization can be numerically captured 
by a continuous approach and discrete macro-
cracks by a discontinuous one. Usually, to 
describe the fracture behaviour of concrete, 
one approach is used. However, in order to 
describe the entire fracture process, a 
continuous approach should be connected with 
a discontinuous one [2]. Fracture and strength 
strongly depends among others on the loading 
velocity. The structural concrete resistance 
increases when the strain rate increases ([3]-
[6]) due to 2 main reasons: inertia forces of 
micro-cracking and viscosity of free water in 
the capillary concrete system ([4], [5]). The 
concrete behaviour at high strain rates is also 
strongly influenced by fragmentation [7]. 
Thus, concrete is a highly rate-dependent 

material ([8]-[10]).  
Two different phases in the strength 

increase can be distinguished in compression 
and tension (Figs.1 and 2). Under 
compression, the first phase corresponds to the 
strain rate <10-1 1/s (it leads to the 
maximum 1.5-times increase of the 
compressive strength) and the second one 

10-1 1/s (it leads to the maximum 3-times 
increase of the compressive strength). Under 
tension two distinct phases happen in the 
increase  of  the  tensile  strength.  At  =100 1/s 
the  tensile  strength  is  2-times  higher  and  at  

=102 1/s is even 9-times greater. 
The  aim  of  our  research  is  to  formulate  a  

reliable continuum constitutive model for 
describing the concrete behaviour under 
dynamic conditions verified by experimental 
dynamic results. 

Initial FE calculations were carried out with 
a coupled elasto-plastic-damage continuum 
model  with  non-local  softening  to  capture  a  
quasi-static cyclic behaviour of concrete [11]. 
Next, the concrete dynamic behaviour was 
simulated with an elasto-plastic model 



I. Marzec and J. Tejchman 

 2

enhanced by usual viscosity. The viscosity was 
incorporated via the Duvaut–Lions approach 
which allows for coupling of different criteria 
(in contrast to the Perzyna model). To properly 
reproduce strain localization, in particular for 
small loading velocities, non-local terms were 
also introduced into a constitutive formulation 
during softening. 

 
Figure 1: Increase of concrete strength versus strain 
rate during compression from different laboratory 

test [9] (CDIF – compressive dynamic increase 
factor). 

 

Figure 2: Increase of concrete strength versus strain 
rate during tension from different laboratory test [9] 

(TDIF – tensile dynamic increase factor). 

 

2 MODEL FOR CONCRETE UNDER 
DYNAMIC CONDITIONS 

Our elastic-visco-plastic continuum 
concrete model was developed based on the 
rate-independent elasto-plastic formulation 
enhanced by viscosity incorporated via the so-
called Duvaut–Lions over-stress approach 
[12], wherein the stress state is allowed to 
remain outside the yield surface. 

To describe inviscid behaviour, the 
Drucker-Prager criterion in compression and 
the Rankine criterion in tension were assumed. 
In a compression regime, a shear yield surface 
based on the linear Drucker-Prager criterion 
with isotropic hardening and softening was 
used [13] 

     1 1

1
tan 1 tan

3 cf q p , (1) 

where q is the Mises equivalent deviatoric 
stress, p denotes the mean stress and  is the  
internal friction angle. The evolution of 
material hardening/softening was defined by 
the uniaxial compression yield stress c( 1). 
The internal friction angle  was assumed as 

                      
3 1

tan
1 2

bc

bc

r

r
, (2) 

where rbc  is the ratio between the biaxial 
compressive strength and uniaxial compressive 
strength (rbc =1.2). The invariants q and p are 

           3
2 ij jiq s s      and      

1
3 kkp , (3) 

where ij is the stress tensor and sij denotes 
the deviatoric stress tensor. The flow potential 
was defined as  

                      1 tang q p , (4) 

where  is the dilatancy angle ( ). For 
the sake of simplicity, the constant values of  
and  were assumed. In turn, in a tensile 
regime,  a  Rankine  criterion  was  used  with  a  
yield function f2 with isotropic softening 
defined as [13] 

           2 1 2 3 2max{ , , } tf , (5) 
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where i – the principal stress, t( 2) – the 
tensile yield stress and 2 – the softening 
parameter equal to the maximum principal 
plastic strain. The associated flow rule was 
assumed. The edges and vertex in Rankine 
yield function were taken into account by the 
interpolation of 2-3 plastic multipliers 
according to the Koiter’s rule. The same 
procedure was adopted in the case of 
combined tension (Rankine criterion) and 
compression (Drucker-Prager criterion). This 
inviscid isotropic elasto-plastic model for 
concrete (Eqs.1-5) requires two elastic 
parameters: modulus of elasticity E and 
Poisson’s ratio , one compression yield stress 
function c=f( 1) (based on a uniaxial 
compression test), one tensile yield stress 
function t=f( 2) (based on a uniaxial tension 
test), internal friction angle  and dilatancy 
angle  (based on a triaxial compression test). 
The model has some simplifications. The 
shape of the failure surface in a principal stress 
space is linear (not paraboloidal as in reality). 
In deviatoric planes, the shape is circular 
(during compression) and triangular (during 
tension); thus it does not gradually change 
from a curvilinear triangle with smoothly 
rounded corners to nearly circular with 
increasing pressure. The strength is similar for 
triaxial compression and extension, and the 
stiffness degradation due to strain localization 
and non-linear volume changes during loading 
are not taken into account. 

The viscosity was incorporated based on 
the Duvant-Lions approach, wherein a 
viscoplastic solution was simply constructed 
through the relevant plastic solution. The 
biggest advantage of this approach is the easy 
numerical implementation (only an additional 
simple stress update loop is needed in existing 
elasto-plastic algorithms). The visco-plastic 
strain rate and hardening parameter were 
respectively defined as 

               
11vp e

ij ijkl kl klC , (6) 

                      1vp , (7) 

where  is the material parameter usually 
called  the  relaxation  time,  and  are  the  stress  
and hardening/softening parameter of an 
inviscid material. The visco-plastic strain rate 
(Eq.6) was defined by the difference between 
the true stresses and stresses obtained in an 
inviscid material. The total strain rate partition 
into an elastic strain rate and a visco-plastic 
strain rate was assumed 

                         e vp
ij ij ij . (8) 

Such formulation allows for a smooth 
transition from an inviscid to viscous case (in 
contrast to the Perzyna visco-plastic model). 
The material was initially considered to be as a 
rate independent one, so the plastic stress 
tensor and a hardening variable were obtained. 
Later, the rate-dependency was incorporated 
by means of Eqs.6 and 7. After solving Eqs.6 
and 7, one obtained the updated viscoplastic 
stress and the updated viscoplastic softening 
parameter integrated over the time step t 
(from t to t+ t) 
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A Duvant-Lions visco-plastic model is 

quite  convenient  to  be  implemented,  since  a  
visco-plastic solution is the update of the 
inviscid solution [8]. A Duvant-Lions visco-
plasticity produces a length in field equations 
as a multiplication product of the elastic wave 
speed times the relaxation time [12]. 

3 MODELLING OF STRAIN 
LOCALIZATION 

An integral-type non-local theory was used 
as a regularization technique to describe strain 
localization at the entire strain rate range ([14], 
[15], [16]). It takes advantage of a weighted 
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spatial averaging of a suitable state variable 
over a neighbourhood of each material point. 
Thus, a state variable at a certain material 
point depends not only on the state variable at 
the point but on the distribution of the state 
variable in a finite neighbourhood of the point 
considered (the principle of a local action does 
not hold – a non-local interaction takes place 
between  any  two  points).  It  has  a  physical  
motivation due to the fact the distribution of 
stresses in the interior of concrete at meso-
scale is strongly non-uniform due to the 
presence of different phases (aggregate, 
cement, bond). Usually, in elasto-plastic 
formulations, it is sufficient to achieve mesh-
independent FE results to treat non-locally one 
state variable controlling material softening 
(e.g. non-local softening parameter), whereas 
stresses, strains and other variables remain 
local ([15], [17]). 

In the case of dynamic problem, the 
viscosity solution is an appropriate solution to 
regularize the initial value problem. However 
for quasi-static this approach is not sufficient. 
The non-locality was introduced into the 
constitutive formulation in an inviscid phase of 
the model. The rates of the inviscid softening 
parameter (Eq.7) were averaged according to 
Brinkgreve [15] 

d d

              , d d d

i i

i im

x x

x x
, (11) 

Since the rate of the softening parameter is 
not known at the iteration beginning, some 
extra sub-iterations are required to solve 
Eq.11. To simplify the calculations, the non-
local rates were replaced by their 
approximations est

id  calculated based on the 
known total strain rate [15] 

d d

          , d d d

i i

est est

i im

x x

x x
. (12) 

The FE results show an insignificant 
influence of the calculation method of plastic 
rates of the non-local softening parameter [17]. 
In addition, an approximate method proposed 
by Brinkgreve [15] in Eq.12 is less time 
consuming (by ca.30%). 

As a weighting function  (called also an 
attenuation function or a non-local averaging 
function), the Gauss distribution was assumed 
[16] independently of strain rates 

                      

2

1
c

r
l

g

r e
c

, (13) 

where the parameter lc is the characteristic 
length of micro-structure, r is the distance 
between two material points and cg denotes 
the normalizing factor equal to cl (1D case),   

2
cl  (2D case) and 3

cl  (3D  case).  The  
averaging in Eq.13 is restricted to a small 
representative area around each material point 
(the influence of points at the distance of 
r=3×lc is only of 0.01%). The weighting 
function satisfies the normalizing condition 
[16]. 

            0

0

,
d

V

x
x

x
. (14) 

A characteristic length is usually related to 
the micro-structure of concrete represented by 
the aggregate size. Based on our both 
numerical simulations of concrete and 
reinforced concrete beams under bending and 
experiments using a digital image correlation 
DIC technique in order to measure the width 
of a localized zone on the concrete surface, a 
characteristic length lc of micro-structure was 
about 5 mm in usual concrete (using the Gauss 
distribution function). A proper non-local 
transformation requires that a non-local field 
corresponding to a constant local field remains 
constant in the vicinity of a boundary. 

The models where implemented into the 
Abaqus  Standard  program  with  the  aid  of  the  
subroutine UMAT (user constitutive law 
definition) and UEL (user element definition). 
For  the  solution  of  a  non-linear  equation  of  
motion governing the response of a system of 
finite elements, a modified Newton-Raphson 
scheme (for simulation neglecting inertia 
effects) and Newmark algorithm (for 
simulation including inertia effects) were used. 
The  calculations  were  performed  with  a  
symmetric elastic global stiffness matrix 
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instead of applying a tangent stiffness matrix 
(the choice was governed by access limitations 
in the commercial software Abaqus). The 
procedure yielded sufficiently accurate and 
fast convergence. The magnitude of the 
maximum out-of-balance force at the end of 
each calculation step was smaller than 1% of 
the calculated total force on the specimen. To 
satisfy the consistency condition f=0 in elasto-
plasticity, the trial stress method (linearized 
expansion of the yield condition about the trial 
stress  point)  using  an  elastic  predictor  and  a  
plastic corrector with the return mapping 
algorithm was applied. The calculations were 
carried out using a large-displacement 
analysis. In this case, the actual configuration 
of the body is taken into account. The Cauchy 
stress was taken as the stress measure. The 
conjugate strain rate was the rate of 
deformation. The rotation of the stress and 
strain tensor was calculated with the Hughes-
Winget method. A non-local averaging was 
performed in the current configuration. This 
choice was governed by the fact that element 
areas in this configuration were automatically 
calculated by Abaqus. 

4 FE RESULTS FOR DYNAMIC TESTS 
In order to investigate the ability of 

presented formulation to proper reproduce the 
strengthening effect under both dynamic 
tension and compression initially the attention 
was laid on influence of viscosity and inertial 
forces on the strength. Therefore, the material 
constants (in particular the relaxation time ) 
were taken in FE analyses in order to 
satisfactorily match numerical results with 
experimental ones. 

4.1 Uniaxial compression test 
A cube specimen was fixed at the lower and 

upper surfaces and the uniform vertical 
displacement was imposed along the upper 
boundary in the range 0-1 mm (Fig.3). The 
basic concrete parameters were: E=37.7 GPa, 

=0.15, =14º, =8º, the compressive yield 
stress yc0=30 MPa with linear softening 
(H=1.55 GPa). The relaxation time was equal 
to 1×10-6, 2×10-6, 1×10-5, 2×10-5 and 2×10-4. 

The calculations were performed as 2D (with 
plane strain triangular elements in the so called 
"union jack pattern") and 3D (with eight-node 
brick elements with full integration) (Fig.3). 
 

a) b) 
 

Figure 3: Uniaxial compression test for numerical 
calculations: a) specimen geometry with boundary 

conditions and b) mesh discretization. 

The effect of several different loading strain 
rates ranged from 10-5 1/s up to 102 1/s was 
investigated on the concrete dynamic 
behaviour. The numerical strength results were 
compared with the compressive dynamic 
increase factor (CDIF) according to the CEB 
recommendation [4]. 

First, the dynamic results using the visco-
plastic model (simulation #1, =2×10-5) and 
elasto-plastic model (simulation #2) with non-
local softening (lc=5 mm) were compared 
during 2D and 3D calculations (Fig.4). The 
calculated dynamic increase factor is 
underestimated as compared to CEB for the 
strain rate <1 1/s, since the same results 
were obtained for strain rates <1 1/s. In turn, 
for high strain rates ( >10 1/s), the calculated 
dynamic increase factor is overestimated since 
fragmentation was not taken into account. The 
increase of CDIF is more pronounced in real 
3D simulations than in simplified 2D analyses. 
In the case of viscous simulations, the increase 
factor CDIF obviously increases slightly faster 
than in non-viscous simulations for >10 1/s. 

The influence of the viscous relaxation time 
 is shown in Fig.5. The relaxation time varied 

between =1×10-6 and =2×10-4. The results 
show that an increase of the viscosity 
parameter leads to a faster growth of strength 
at loading rates 110 1/ s  only. With large 
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relaxation, an increase of DIF was obtained 
also at ~1 1/s, but simultaneously it grew too 
rapidly at large strain rates. 
 

 
 

Figure 4: Dynamic FE simulation results considering 
effect of formulation type and presence of viscosity 

with relaxation time =2×10-5 as compared to 
dynamic compressive increase factor CDIF by CEB 

(#1 - elasto-visco-plastic model with non-local 
softening and #2 - elasto-plastic model with non-

local softening). 

 
 

Figure 5: Dynamic FE results of CDIF with different 
relaxation time  using elasto-visco-plastic model 

with non-local softening as compared to CEB curve. 

4.2 Direct tension test 
A dumbbell-shaped specimen was 

considered as in the experiments by Yan and 
Lin [18] (Fig.6). The following material 
parameters were assumed in FE calculations: 
E=29.0 GPa, =0.15 and the tensile yield 
stress yt0=2 MPa with linear softening 
(H=0.65 GPa). The numerical dynamic 
simulations were performed with the strain 

rate varying between 10-5 1/s and 101 1/s (the 
experiments were carried out at the loading 
strain rate ranged from 10-5 1/s up to 10-0.3 
1/s). The numerical results with the elasto-
visco-plastic model with non-local softening 
(lc=5 mm) and different viscosity parameter: 
=1×10-6, 1×10-5, 2×10-5, 1×10-4 and 2×10-4 

(simulation #1) were compared with those 
with the pure elasto-plastic model with non-
local softening (lc=5 mm) (simulation #2). 

 

  
 

Figure 6: Uniaxial tension with of dumbbell-shaped 
concrete specimen: geometry [18] and FE mesh. 

The summarized FE results are shown in 
Figs.7 and 8.  Similarly as under compression, 
the numerical outcomes show that the dynamic 
increase factor is underestimated as compared 
to  the  both  experiments  [18]  and  CEB  
recommendation for the small strain rates <1 
1/s) and overestimated for large strain rates. 
An increase of a viscosity parameter leads to a 
better accordance with the comparative data, 
however  only  at  the  strain  rate  <1  1/s.  In  
turn, for the higher loading rates, the 
calculated dynamic effect is quite close to 
CEB for a very small viscosity parameter . 
For  simulation  #2  (without  viscosity)  the  
strength increase with increasing strain rate is 
practically not obtained. In the calculations, 
the softening rate increased with increasing 
strain rate at small strain rates and was similar 
at large strain rates. 

5 OWN LABORATORY TESTS 
In order to get a better insight into the 

concrete behaviour under dynamic loading, 
some experimental tests were conducted using 
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a servo-hydraulic load machine Zwick HB 
250. The cyclic dynamic vertical force-
displacement diagrams were measured over a 
wide range of loading rates (from 0.0005 mm/s 
up  to  5  mm/s).  The  displacements  on  the  
concrete surface were registered using the 
Digital Image Correlation technique to register 
the shape and width of localization zones and 
cracks.  
 

  

 
 

Figure 7: The load-displacement curves from FE 
dynamic simulations for different vertical strain rate 

using elasto-visco-plastic model with non-local 
softening ( =2×10-5, lc=5 mm). 

 
 

Figure 8: Dynamic FE results of uniaxial tension as 
compared to TDIF by CEB for different vertical strain 
rate at different relaxation times (#1 - elasto-visco-

plastic model with non-local softening and #2 - 
elasto-plastic model with non-local softening). 

The measured force-displacement 
evolutions are demonstrated in Fig.9. The 
strength and material brittleness increase with 
increasing strain rate. 

 
a) 

 
 
 
 
 

 
 
 
 
 
 
 

 
b) 

 
 

Figure 9: Results of own initial experimental 
dynamic tests on concrete beams under three-point 

bending: a) specimen geometry and contours of 
localized zone captured with DIC, b) force-

displacement curves at different loading rate. 

6 CONCLUSIONS 
The FE calculations with the elasto-visco-

plastic model with non-local softening show 
that at small loading strain rates, the calculated 
dynamic increase factor is too small and for 
high loading strain rates is too high as 
compared to the CEB recommendation. Thus, 
usual viscosity in a plastic domain is not a 
sufficient tool to realistically describe the 
concrete dynamic behaviour. Further research 
works are needed by taking into account 
elastic and retarding viscosity, and material 
fragmentation in the constitutive concrete 
formulation at macro-level. 
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