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Abstract. Concrete, ceramics, fiber and particle reinforced composites, as well as porous media, are
materials widely used in industry and engineering. All these materials are heterogeneous at a certain
scale and some of their specific macroscopic behaviors during damage can be traced back to their
micro structural behavior. In order to obtain realistic results in the numerical simulations of hetero-
geneous materials, one needs either to perform computationally intensive fine scale simulations or to
adopt a multi-scale technique that is able to reduce the computational cost of the analysis while it
retains enough accuracy on the quantities of interest. In this paper the mathematical homogenization
approach is used to upscale the Lattice Discrete Particle Model (LDPM), that have been success-
fully formulated to simulate concrete at the scale of the major heterogeneities. The Lattice Discrete
Particle Model (LDPM) simulates concrete at the meso-scale considered to be the length scale of
coarse particle pieces. Contrarily to continuum-based approaches, in discrete models like LDPM,
the displacement and rotation fields are only defined in a finite number of points representing the
center of coarse aggregate particles. The mechanical interaction between adjacent particles is gov-
erned by meso-scale constitutive equations. In this work LDPM is homogenized through the classical
mathematical homogenization by employing first order asymptotic expansions for displacements and
rotations. Numerical simulations are carried out to analyze the behavior of the resulting homogenized
macroscopic constitutive equation.

1 INTRODUCTION

Most of natural and engineering materials,
such as ceramics, concrete, composites and
rock are heterogeneous at some scale. This het-
erogeneity at lower scales is the root of a va-
riety of macroscopic behaviors, especially dur-
ing failure. Experiments show that governing
behavior of heterogeneous materials strongly
rely upon the characteristics of heterogene-

ity, such as, but not limited to, size, spatial
distribution, and shape. Therefore, to cap-
ture the realistic global behavior of heteroge-
neous materials, a multi scale analysis of mate-
rial is inevitable. Among different multi scale
techniques, homogenization is a well known
method widely used over the past decades. Es-
helby [1] and Hashin and Strikman [2] were
among the first to develop analytical homoge-
nization techniques for the analysis of compos-
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ite materials. Analytical homogenization tech-
niques provide reasonably approximate mate-
rial properties in the elastic regime but they be-
come prohibitive to apply when nonlinear ef-
fects need to be accounted for. by mathemati-
cally solving a boundary value problem. Non-
linear problems characterize by plasticity and
strain hardening have been solved in the past
decade through the so called computational ho-
mogenization (see Refs. [4] to [7]), in which
the gauss point response of a given material
is obtained by applying appropriate boundary
conditions to a representative volume element
(RVE). The RVE, firstly introduced by Hill [3],
is defined as a the smallest volume of material
in which heterogeneous structure is explicitly
modeled and whose homogenized response is
statistically insensitive to the fine features of the
material internal structure. Since no assumption
is made for the macroscopic constitutive law,
this method can be used for extremely nonlin-
ear material behaviors.

Another type of homogenization technique,
called Asymptotic Expansion Homogenization
(AEH), uses asymptotic expansion of displace-
ment field to build the homogenization frame-
work. The asymptotic expansion is based on
a length parameter which is the ratio between
an intrinsic size of heterogeneity to a macro-
scopic typical length. Starting from equilib-
rium equation and using a variational approach,
one can obtain separate governing equations
for different scales. By using this approach,
one can gain macroscopic average constitu-
tive behavior as well as local distribution of
stress and strain fields in the fine scale domain.
Chung [8] presented detailed derivation of mul-
tiple scale formulation for elastic solids. Fish
[9, 10] employed this approach to study lin-
ear and nonlinear behavior of composites in a
FEM analysis. Ghosh [11] used this approach
along with Voronoi Cell Finite Element Method
(VCFEM) to study the elastic behavior of com-
posites with random meso-structure as well as
elastic-plastic behavior of heterogeneous ma-
terials [12]. Fish [13] also used asymptotic
homogenization to derive continuum equations

starting from Molecular Dynamic (MD) equa-
tions.

Absolute size of the heterogeneity influences
the homogenized behavior of a multi phase ma-
terials and composites. Classical homogeniza-
tion techniques described above can take into
account the effect of shape and volume fraction
of heterogeneity, but cannot capture the effect
of absolute size of heterogeneity. In addition,
for materials which shows softening behavior,
mesh dependency has been a well known prob-
lem. To overcome this difficulties, different
non-local techniques has been proposed. Mod-
elling materials as Cosserat continua is one
of those approaches. Feyel [14] built a ho-
mogenization scheme in a FE2 framework to
derive Cosserat continua at macro scale from
Cauchy heterogeneous continua at the micro-
scale. Asymptotic homogenization technique
was also employed by Forest [15] for elastic
Cosserat solids. He studied different type of
expansion series for displacement and rotation
fields and investigated their effect. He showed
that the nature of homogenized continua de-
pends on the ratio of the Cosserat characteristic
length of constituents, size of heterogeneity and
typical size of the structure. Sluis [16] homoge-
nized a RVE of polymer to a Cosserat continua
to solve mesh dependency problem of softening
materials. In most of the research in homog-
enization of Cosserat media, fine and coarse
scale problems are both considered to be gov-
erned by continuum mechanics. The literature
is scarce as far as multiple scale homogeniza-
tion in which fine scale problems are governed
by discrete mechanics. Among very few others,
recently, Li [17] developed a micro-macro ho-
mogenization framework for particulate media.

In this paper, we develop a mathematical
scheme to homogenize the Lattice Discrete Par-
ticle Model (LDPM), a discrete model for con-
crete, to a continuum one. LDPM developed by
Cusatis et al. [18, 19] is a discrete model that
showed an outstanding ability to simulate con-
crete behavior under a wide variety of loading
conditions.
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2 The Discrete Fine-Scale Problem

Discrete fine-scale modelling of heteroge-
neous quasi-brittle materials, including, but not
limited to, concrete, rock, sea-ice, toughened
ceramics, and composites, has become widely
popular during the past few decades due to its
intrinsic ability to simulate material heterogene-
ity and fracture induced displacement disconti-
nuity. Discrete fine-scale models are character-
ized by the following features: (1) The geome-
try of the computational model is built with ref-
erence to the actual internal structure the mate-
rial of interest and it consist of “particles” con-
nected through either “contact points” or “con-
necting struts”; (2) The kinematic description
(displacement and rotation fields) are defined
only at a finite number of points coinciding with
the particle centers; (3) Strain and stress mea-
sures are defined only at the contact points or
at the centroid of the connecting strut cross sec-
tions; (4) Discrete models employ vectorial, as
opposed to tensorial, stress versus strain rela-
tionships to describe the constitutive behavior;
and (5) The classical concepts of equilibrium
and compatibility are formulated through alge-
braic equations, as opposed to partial differen-
tial equations typical of continuum mechanics.
These characteristics has been proven to be very
effective for the realistic simulation of strain lo-
calization, fracture, and fragmentation of sev-
eral different materials.

Classical discrete models are the Discrete El-

ement Method (DEM) and frame/truss models.
DEM was first proposed by Cundall [20] to sim-
ulate particulate geomaterials, and it has been
extensively and successfully used by many au-
thors to model sand, cohesive and cohesive-less
soils, and rocks [21, 22]. Lattice models, orig-
inally developed by Hrennikoff [23] to solve
elasticity problems, were later used by Burt and
Dougill [24] to simulate progressive failure in
heterogeneous materials. In these models, a
network of lattices are used to simulate the dis-
creteness of the meso-structure. Lattice models
have been also used to model failure in concrete
and composites (see Refs. from [25] to [29]).

If one limits the analysis to the case of small
strains and displacements – which is a reason-
able assumption in absence of large plastic de-
formation prior to fracture as observed in brittle
and quasi-brittle materials – the fine-scale prob-
lem can be formulated with reference to the ini-
tial configuration of each single particle (or lat-
tice node) surrounded by a number of neighbor-
ing particles (or lattice nodes) as shown in Fig.
1. The basic geometrical entities used to for-
mulate the fine-scale framework are (1) parti-
cle centers or lattice nodes – referred as simply
“node” thereinafter – where displacements and
rotations are defined; and (2) the “facets” which
represents weak locations in the material inter-
nal structures where damage is likely to local-
ize and fracture to occur and where measures
of deformation are introduced and constitutive
equations enforced.

Figure 1: Geometrical vectors in two dimension
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Displacement jump on a generic facet f be-
tween node I and node J can be written as

JuCK = UJ + ΘJ × cJf −UI −ΘI × cIf (1)

Next, measures of deformation can be de-
fined as

εfα = r−1JuCK · eIJfα (2)

where εfα = strains; r = |rIJ |; rIJ = xJ − xI ;
eIJfα (α = N,M,L) are unit vectors defining
a facet Cartesian system of reference such that
eIJfN = is orthogonal to the facet and eIJfN ·rIJ >
0; UI , UJ = displacement vectors of node I
and J ; ΘI , ΘJ = rotation vectors of node I
and J ; and cIf , cJf = vectors connecting nodes
I and J to the facet centroid. It must be ob-
served here that, in general, displacements and
rotations are assumed to be independent vari-
ables. Also, curvature type measures of defor-
mation could be included as well but they are
not considered here because they are not used
in the LDPM formulation.

For a given strain vector, a vectorial con-
stitutive equation provide the stress stress, tIJf ,
on the facet. Formally one can write tIJf =
tfα(εfN , εfM , εfL)eIJfα where summation rule
applies. As an example, elastic behavior can be
formulated through the following equations

tfα = Eαεfα (3)

In the previous equations each traction com-
ponent is proportional to the associated strain
(summation rule does not apply); and Eα are
fine-scale elastic constants.

Finally, the computational discrete fine-scale
framework is completed by imposing the equi-
librium of each single particle subject to the ef-
fect of all surrounding particles. Translational
and rotational equilibrium equations for quasi-
static loading conditions read

NI
f∑

f=1

Aft
IJ
f (εfα) = 0 (4)

and
NI

f∑
f=1

Afc
I
f × tIJf (εfα) = 0 (5)

where N I
f = number of facets surrounding node

I; AIf = facet area. In all above equations, vari-
ables with subscript f are variables related to a
specific facet, f , common between the two par-
ticles I and J . Hereafter, subscript f is dropped
from the equations for simplicity.

3 Mathematical Homogenization Based on
Asymptotic Expansion Series

In this section, two-scale homogenization of
the general fine-scale problem introduced in
the previous section is pursued by means of
the generalized mathematical homogenization
(GMH), first introduced in Ref. [13] for the
multiscale analysis of atomistic periodic sys-
tems. In the original formulation only central
forces were assumed to act on the particles and,
consequently, the rotational equilibrium equa-
tion was not considered. This limitation is re-
moved in the current study.

3.1 Two Scale Approximation and Asymp-
totic Expansions

In order to perform a two-scale asymptotic
homogenization, one needs to define two sep-
arate scales and the corresponding coordinate
systems x and y: x represents the macro-
scopic coordinate system in which the prob-
lem is defined as continuous and it does not see
any material heterogeneity; y is the meso-scale
(stretched) coordinate system, in which hetero-
geneity is modeled by the discrete meso-scale
model. If the separation of scales exists, one can
write the following relationship linking macro
and meso coordinate systems

x = ηy 0 < η << 1 (6)

where η is a very small positive scalar. In
addition, the displacement of a generic node
I , UI = u(xI ,yI), can be approximated by
means of the following asymptotic expansion

u(x,y) ≈ u0(x,y) + ηu1(x,y) (7)

where u0 is the macroscopic displacement
field. Whereas u1 is the meso-scale correc-
tion which depends on both coordinate systems.
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Similarly, the asymptotic expansion of the rota-
tion of a generic node I , ΘI = θ(xI ,yI), can
be approximated by the following expansion

θ(x,y) ≈ η−1θ−1(x,y)+θ0(x,y)+ηθ1(x,y)
(8)

where θ−1 is the macroscopic rotation field, θ0

is a combination of macro scale and fine scale
rotations, and θ1 is the fine scale rotation field
dependent on both coordinate systems. Note
that in all previous equations and in the rest of
this paper, the time dependence of the variable
is dropped in the notation for a better readability
of the equations. In the macroscopic coordinate
x, the difference in position between node I and
J can be considered as infinitesimal. Hence,
in order to obtain the asymptotic expansion of
strain, it is convenient first to obtain the Taylor
series expansion of displacement and rotation at
node J around the point I . By assuming that the
displacement and rotation fields in Eqs. 7 and 8,
are continuous and differentiable with respect to
x, one can write the displacement and rotation
of node J as

UJ
i = Ui(x

J
i , y

J
i , t) =

= uJi +
∂uJi
∂xm

xIJm +
1

2

∂2uJi
∂xm∂xn

xIJm x
IJ
n + · · ·

(9)

ΘJ
i = Θi(x

J
i , y

J
i , t) =

= θJi +
∂θJi
∂xm

xIJm +
1

2

∂2θJi
∂xm∂xn

xIJm x
IJ
n + · · ·

(10)

where uJi = ui(x
I ,yJ); θJi = θi(x

I ,yJ); xJj
is a vector connecting node I to node J in x
space. One should replace Eqs. 9 and 10 along
with asymptotic expansions of rotation and dis-
placement, Eqs. 7 and 8 into the definition of
strain, Eq. 2, to have multiple scale expression
facet strain. By doing so and some mathemat-
ical manipulations, one gets following form of
equations for facet strain

εα = ε0α + ηε1α (11)

where

ε0α = r̄−1
[
u1Ji − u1Ii + εijkω

0J
j c̄

J
k − εijkω0I

j c̄
I
k

+ v0i,jy
IJ
j − εijkφ0

jy
IJ
k

]
eIJαi

(12)

where θ0 is the sum of ω0 and φ0. ε1α is a
function of asymptotic displacement and rota-
tion terms.

In the above equations variables with a bar
sign are length variables in y coordinate system
which are related to the same variables in the x
coordinate system through Eq. 6.

Before proceeding with the derivation,
rescaling of the discrete equilibrium equations
needs to be performed, in order to obtain the
correct scale separation of the governing equa-
tions. By dividing Eq. 4 by η2, and consider-
ing that all length variables should be consid-
ered ∼ O(η1), one obtains

NI
J∑

J=1

ĀIJ t̄IJ(εα) = 0 (13)

ĀIJ = AIJ/η2 and t̄IJ = tIJ are all quantities
∼ O(η0).

Similarly, one can also rescale the rotational
equation of motion in Eq. 5

NI
J∑

J=1

ĀIJ(c̄I × t̄IJ(εα)) = 0 (14)

where c̄I = cI/η. Also, if one should uses the
Taylor expansion for facet traction vector, one
can write.

t̄IJi (εα) ' t̄IJi (ε0α) +
∂t̄IJi
∂ε0α

ηε1α (15)

Finally, by replacing the above equations in
Eqs. 13 and 14, and collecting the terms of
O(η0) and O(η1), the multiple-scale equilib-
rium equations can be obtained as discussed in
the next section.
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3.2 Fine Scale Governing Equations
One can first consider the terms ofO(η0) and

scale all terms back
NI

J∑
J=1

AIJtIJi (ε0α) = 0 (16)

NI
J∑

J=1

AIJ(εijkc
I
j t
IJ
k (ε0α)) = 0 (17)

These equations are the fine scale equilib-
rium equations for a single particle placed in-
side the RVE. Eq. 16 is the force and Eq. 17
is the moment equilibrium equations for parti-
cle I . If one consider the definition of ε0α, Eq.
12, it can be noticed that there are macroscopic
terms which are projected on each facet. The
term v0i,j − εijkφ

0
j corresponds to macroscopic

definition of Cosserat strain tensor. This macro-
scopic quantity is transferred from macro scale
problem to the fine scale problem and are used
as the applied load in the RVE problem to ob-
tain fine scale solution.

3.3 Macro Scale Governing Equations
Now, let’s consider consider the O(η1) equa-

tions
NI

J∑
J=1

AIJ
∂tIJi
∂ε0α

ε1α = 0 (18)

NI
J∑

J=1

AIJεijkc
I
j

∂tIJi
∂ε0α

ε1α = 0 (19)

It can be demonstrated that after some math-
ematical manipulations, the above macroscopic
equations can be expressed as

∇x · σ = 0

σ =
1

2V0

∑
I

NI
J∑

J=1

AIJ(xIJ ⊗ tIJ)
(20)

and

ε : σ + ∇x · µ = 0

µ =
1

2V0

∑
I

nI
J∑

J=1

AIJ(xIJ ⊗ (cI × tIJ))
(21)

where σ is the macroscopic stress tensor and µ
is the macroscopic moment stress tensor. These
tensors are calculated based on the fine scale so-
lution quantities, tIJ obtained from solution of
fine scale problem, and fine scale geometrical
vectors cI and xIJ .

4 Numerical Results

In this section some numerical examples are
presented to check the validity of the derived
formulation. As mentioned in the previous
sections, the Lattice Discrete Particle Model
(LDPM) is used in the numerical examples.

4.1 Elastic RVE Analysis

In this section, effective elastic material
properties of a representative volume of con-
crete modeled by LDPM is studied. To carry out
the elastic analysis, RVEs of six different sizes
are considered: 10, 15, 20, 25, 35, 50 and 100
mm. maximum particle size is chosen as 8 mm.
For discrete model parameters, EN = 60273
MPa and EM = EL = 0.25EN are used. Five
different particle configurations are considered
for each RVE size, and elastic material proper-
ties are calculated for all of them.

4.1.1 Pure tension test

To evaluate the Young modulus, a uni-axial
macroscopic strain tensor is applied the RVE.
All components of the macroscopic strain ten-
sor are zero except for the normal strain in one
direction. The RVE problem subjected to this
strain tensor is solved, and stress and moment
stress tensors are calculated based on the Eqs.
20 and 21. By interpreting the results through
classical elasticity, one can calculate Young
modulus and Poisson’s ratio of the RVE. Figure
2 shows the change in averaged Young modu-
lus and Poisson’s ratio with respect to RVE size.
Length of the error bars at each size is twice the
standard deviation calculated over the five dif-
ferent realization for each RVE size.
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Figure 2: (left) Young modulus and (right) Poisson’s ratio evaluated through homogenization and comparison with theo-
retical formulation

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

µ
∗

[-
]

D [mm]
0 50 100 150

0

0.5

1

1.5

σ
∗

[-
]

D [mm]

Figure 3: (left) Variation of anti-symmetric part of stress tensor (right) moment stress tensor magnitude normalized with
respect 10 mm RVE

One can see that both Young modulus and
Poisson’s ratio are converging to a constant
value by increasing the size of the RVE. Stan-
dard deviation of those quantities also tends to
zero as size of the RVE is increased. This means
that the bigger the size chosen for RVE, the less
the particle distribution inside the RVE affects
the results.

4.1.2 Simple shear test

The Cosserat character of LDPM is analyzed
in this section where a pure shear strain state is
applied to the RVE. Moment stress tensor and
anti-symmetric part of the stress tensor are the
quantities considered here. To investigate the
effect of the size of the RVE on these quanti-

ties, the following variables are defined

µ∗ =

√
[
∑

i

∑
j µ

2
ij]D√

[
∑

i

∑
j µ

2
ij]10

(22)

σ∗ =
[σ21 − σ12]D
[σ21 − σ12]10

(23)

with reference to the 10 mm size RVE. Varia-
tion of 22 and 23 with respect to RVE size is
plotted in figure 3.

The plot shows that increasing the size of
the RVE, while the maximum particle size is
kept constant, the behavior of the homoge-
nized continuum transition from Cosserat-type
to Cauchy-type as demonstrated by the decrease
of the magnitude of moment stress tensor and
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anti-symmetric part of stress tensor. It means as
one increases size of the RVE, medium of inter-
est goes from Cosserat continuum to Cauchy.
One can also notice that standard deviation of
these quantities also tends to zero by increas-
ing the size of the RVE, which means that mesh
configuration is less influential.

4.2 Nonlinear RVE Analysis
In this section, the nonlinear response of

RVEs of different size is investigated. RVE
sizes of 25, 50, and 100 mm are considered in

this section. Seven different type of mesh con-
figuration (particle distribution inside RVE) is
considered for each case. Particle distribution
and geometry of one sample of each RVE size is
shown in figure 4. Boundary particles are elim-
inated to be able to show the particles of differ-
ent sizes inside RVE. Uniaxial strain tensor is
imposed on the RVEs, while periodic boundary
conditions are applied. Stress-Strain curve are
obtained for each RVE and for each mesh con-
figuration.

Figure 4: RVE geometry and particle distribution. (left) 25 mm - (middle) 50 mm - (right) 100 mm
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Figure 5: Average tensile stress-strain curve for three dif-
ferent RVE size

The average stress-strain curves are calcu-
lated for each RVE size and presented in Fig.
5. It is shown that increasing size of the RVE,
forces the post peak curve becomes steeper.
This is consistent with the fact that the homog-
enization procedure can capture strain localiza-
tion as shown in Figure 6, where one can see
the damaged RVEs at the end of tensile loading
process. Contours in Figure 6 represent crack
opening distributions for an imposed macro-
scopic strain equal to 0.001. While the ability
of the homogenized procedure to handle dam-
age localization is certainly a sign that the pro-
cedure captures well the overall behavior of the
fine-scale model, it leaves open the question on
how to select the size of the RVE. Similar to
the work of Gitman and coworkes [30] in the
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contest of computational homogenization, the
current results suggest that objectivity of the
macroscopic response under softening regime

is preserved only if the volume of the RVE
is equal to the macroscopic volume associated
with the gauss point where the RVE is solved.

Figure 6: Crack opening contour of damaged RVEs at tensile strain equal to 0.001 (left) 25 mm (middle) 50 mm (right)
100 mm

5 CONCLUSIONS
IN this paper, a mathematical homogeniza-

tion framework based on the asymptotic expan-
sion of displacement and rotation fields are built
starting from the equilibrium equations of mo-
tion. Multiple scale formulation for fine scale
and macro scale problem are derived. Some
linear and nonlinear numerical tests have been
carried out on the unit cell and following con-
clusions are drawn

1. Macroscopic Cosserat strain tensor is ob-
tained as the quantity which should be
transferred from macro scale problem to
lower scale one as the applied strain.

2. Increasing the size of the RVE, mesh con-
figuration effect on elastic material prop-
erties decreases.

3. Increasing the size of the RVE and keep-
ing the maximum particle size constant,
Young modulus and Poisson’s ratio con-
verges to a constant value.

4. In elastic regime, changing the size of the
RVE does not affect the result, while in

the softening regime it influences the re-
sults significantly due to damage localiza-
tion.

5. Due to strain localization happening in
the post peak regime, RVE behavior is
size dependent, which shows the main
problem in homogenization of quasi-
brittle materials.
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