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Abstract: Accurate knowledge of stress/displacement field in a cracked specimen is very important 

for fracture analysis and for instance in the case of quasi-brittle materials, where the zone of non-

linear behavior affecting the overall fracture process is larger than in other (brittle) materials, it can 

play a key role. In this paper, it is shown that Williams expansion can describe the crack-tip fields 

reliably, provided that considerably more than one or two terms of the power series are taking into 

account. Such an approach, referred to as multi-parameter fracture mechanics, is usually not used 

for a common assessment of crack behavior. The study presented shows that especially in larger 

distances from the crack tip the higher-order terms are crucial in order to minimize the error corre-

sponding with use of only one or two fracture parameters (the first and second terms of Williams 

expansion). In other words, considering of the higher-order terms of the Williams expansion is 

essential if knowledge of accurate stress/displacement fields around the crack tip in the analysed 

specimen/structure is required.  
 

 

1 INTRODUCTION 

Estimation of reliability of cracked struc-

tures is a very important engineering task. 

Linear elastic fracture mechanics (LEFM) is 

widely extended and used to determine the 

critical (allowed) crack lengths in the case of 

brittle materials. The stress intensity factor is 

well known as the single controlling parameter 

for prediction of crack initiation and propaga-

tion in these materials and it is directly associ-

ated with the singular stress behavior near the 

crack tip. 

Nevertheless, recent studies show that not 

only the T-stress (as the first non-singular term 

of the Williams expansion [1]) has a great 

effect on fracture toughness values, size and 

shape of the plastic zone, crack path direction, 

etc. [2−12] but also the higher-order terms can 

be very significant for crack behavior assess-

ment; they can predict the constraint of elasto-

plastic crack tip fields [7, 9, 13−16] and inter-

pret (at least some aspects of) the size/ge-

ometry/boundary effect typical for quasi-brittle 

materials [17−21]. 

Furthermore, the complicated fracture pro-

cesses in quasi-brittle materials do not occur 

exclusively in the very vicinity of the crack tip 

(the crack tip is practically impossible to dis-

tinguish) and therefore the stress/displacement 

field has to be known even in a larger distance 

from it. As a consequence, not only the first 

(singular) term of the Williams series ap-

proximation of the crack tip asymptotic field 

[1], but also the other (higher-order) terms 

have to be considered during the fracture 

analysis. This way, the extent of the zone 

around the crack tip with non-linear behavior, 

where the material fails, can be estimated 
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reliably, which is essential for additional frac-

ture response assessment. 

In this paper, the higher-order terms coeffi-

cients are obtained by means of combination 

of numerical solution (finite elements, FE) of 

the problem and analytical description of the 

displacement field (Williams power expan-

sion, WPE). The used approach is called as the 

over-deterministic method (ODM), see e.g. 

[22] for details, it represents a regression 

technique based on least squares formulation 

and its main advantage is that it does not re-

quire any special crack elements or compli-

cated FE formulations. Contrary to other 

methods (boundary collocation method, hybrid 

crack elements method, see for instance 

[23−26]) it uses only the displacement field 

around the crack tip determined by means of 

the conventional FE analysis. Note that ODM 

represents a modification of direct methods 

used e.g. for stress intensity factor estimation. 

The application of the ODM on selected 

mode I and mixed-mode configurations is 

described in the following text and the im-

portance of consideration of the higher-order 

terms for stress/displacement field description 

is highlighted.  

2 METHODOLOGY 

2.1 Near-crack-tip field description 

Williams [1] derived that the stress and dis-

placement distribution can be expressed as a 

power series. Assuming a plane crack with 

traction-free faces in a linear-elastic material 

subjected to arbitrary remote loading, the 

stress/displacement field around the crack tip 

obtained by the Williams eigenfunction expan-

sion technique is given as:  
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where i,j  x,y, the coefficients an and bm (in 

our case unknown) depend on the specimen 

geometry and loading conditions, and corre-

spond to the loading mode I and II, respec-

tively. In Eq. (1) and (2), r and θ represent the 

polar coordinates centered at the crack tip, see 

Fig. 1, E and ν are Young’s modulus and 

Poisson’s ratio and 
σ
fI, 

σ
fII and 

u
fI, 

u
fII symbol-

ize known functions corresponding to the 

mode I/II (fI/fII) and stress/displacement (σ/u) 

distribution.  

Coefficients an and bm are functions of rela-

tive crack length α = a/W, where a is the crack 

length and W is the specimen’s width. They 

can be expressed as dimensionless functions 

(with regard to loading), gI and gII, respec-

tively, as follows [27−29]: 
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where σ is the nominal stress caused by the 

applied load. 

2.2 Over-deterministic method 

There have been derived several methods 

enabling determination of the coefficients of 

the higher-order terms, an and bm, of the Wil-

liams expansion. Most of those methods use 

advanced mathematical procedures and more 

extensive and deeper knowledge of the special 

elements or FE code is unavoidable. From that 

reason, ODM has been chosen for estimation 

of the coefficients of the higher-order terms in 

this paper. This method requires only know-

ledge of the displacement field data deter-

mined by means of the conventional FE analy-
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sis in a set of nodes around the crack tip. The-

se data serve then as input for Eq. (2). As two 

components of displacement vector is known 

in each node (in the case of 2D problem), two 

equations are available for each node. Conse-

quently, a system of 2k equations for variables 

an and bm exist, where k represents the number 

of nodes selected for the ODM application. In 

this paper, commercial mathematical packages 

were used for solution of the resulting system 

of algebraic equations. Note that a relation 

between the number of nodes, k, and the num-

ber of variables of loading mode I (N: a0, a1,..., 

aN) and of loading mode II (M: b0, b1..., bM) 

has to satisfy the following inequality in order 

to meet the condition for an over-determined 

system of equations: 

22  MNk . (3) 

More details about the ODM can be found for 

instance in [22]. Authors of the present paper 

have also devoted several publications to 

parametric studies on ODM accuracy, conver-

gence, or mesh sensitivity etc., see e.g. 

[30−35]. 

3. NUMERICAL MODELING 

In order to demonstrate the significance of 

considering of the higher-order terms of WPE, 

two loading geometries have been chosen. The 

main goal is to compare the stress distribution 

obtained from the numerical simulation of the 

problem (by means of FE analysis) with the 

stress distribution defined analytically by 

Williams expansion, whose terms coefficients 

have been determined from the same FE anal-

ysis’ results using ODM. The analytical ap-

proximation is done in variants with various 

ranges of higher-order terms of WPE. 

3.1 Mixed-mode geometry − AECT 

A plate with an angled edge-crack under 

uniaxial tension (AECT) was chosen as the 

mixed-mode geometry investigated. The angle 

between the crack and the edge normal was 

considered as β = 30°, see Fig. 1 and [22] for 

details. 

In order to obtain the appropriate displace-

ment field near the crack tip (which is neces-

sary for the ODM application) a corresponding 

numerical model of the cracked specimen had 

to be created; it was done in ANSYS software 

[36], see the FE mesh used in Fig. 1. The 

specimen width, half length as well as thick-

ness were considered to be unity, relative 

crack length a/W = 0.6, β = 30°, applied stress 

σ = 1. Note that all units used were self-con-

sistent and therefore no units are presented. 

Because of the independence of the coeffi-

cients of the WPE on material properties, 

values of Young’s modulus and Poisson’s ratio 

were chosen as E = 1 and ν = 0.25. The crack-

tip singularity was modeled through the first 

row of elements made of the so-called crack 

elements with shifted mid-side nodes, whereas 

standard 8-node isoparametric elements were 

used for modeling of the rest of the specimen. 

Plane stress conditions were met in accordance 

with [22] whose results were employed for 

(partial) verification of presented results. 

For evaluation of the higher-order terms co-

efficients the displacements of the fifth ring of 

nodes around the crack tip were used as inputs 

for the ODM procedure programmed in Math-

ematica package [37]. For purposes of this 

paper, the first ten higher-order terms coeffi-

cients of the both loading modes (an and bm) 

were determined. 

  

Figure 1: Numerical model of the plate with an angled 

edge-crack under uniaxial tension, β = 30°, with applied 

boundary conditions used for the stress/displacement 

fields comparative study 
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3.2 Mode I geometry − WST 

A cube-shaped wedge-splitting test (WST) 

specimen was selected as the mode I geome-

try. In this paper, the WST specimen’s size, 

shape and details of the boundary conditions 

(e.g. loading platens, load decomposition, 

dimensions of the groove for inserting of the 

platens etc.) were considered in accordance 

with prepared experimental campaign and 

corresponding numerical analyses which pre-

ceded the testing preparation [32, 33, 38−41]. 

Note that the basic dimension of the cube-

shaped specimen is equal to 100 mm; the value 

of the splitting component of the loading force 

(the horizontal one in Fig. 2) was considered 

equal to 1 kN, the angle of the loading wedge 

equal to 15°. Elastic constants of the material 

model for concrete and steel platens were set 

to E = 35 GPa, ν = 0.2 and E = 210 GPa, 

ν = 0.3, respectively. For other details see e.g. 

[33]. The model was created similarly to the 

above-mentioned mixed-mode case, the same 

FEM software was used [36]. Plane strain 

conditions were used here as the breadth of the 

specimen is significant. FE model of the sym-

metrical half of the test specimen, including 

the detail of the mesh around the crack tip is 

depicted in Fig. 2. 

4 RESULTS AND DISCUSSION 

4.1 AECT 

Values of the coefficients an and bm deter-

mined by ODM and then used for the stress 

evaluation are introduced in Tab. 1. Note that 

values of the first five coefficients corre-

sponding to both loading modes have been 

verified with data published in literature and 

their mutual agreement is very good, see [31] 

for details. 

In order to present the influence of the 

higher-order terms on the stress distribution, 

the stress tensor components σx, σy, τxy have 

been investigated in several directions around 

the crack tip: θ = 0° (a path ahead of the crack 

tip), θ = 45° and θ = 180° (a path along the 

stress-free crack faces). The last angle enables 

to verify the numerical model and estimate the 

region in the very vicinity of the crack tip 

 
Figure 2: Numerical model of the WST on cube-shaped 

specimen (symetrical half) with detail of the FE mesh 

around the crack tip (nodes considered for the higher-

order terms coefficients computation using ODM are 

emphasized) 

Table 1: Values of the dimensionless expression of the 

higher-order terms coefficients of the loading mode I, 

gI,n, and the loading mode II, gII,m, used for the 

comparative analysis 

n, m    gI,n [-]   gII,m [-] 

1 1.394             −3.785 × 10−1 

2 5.971 × 10−1 −6.660            

3 −1.272             −2.212 × 10−1 

4 2.477 × 10−1 −1.931 × 10−1 

5 −5.435 × 10−1 1.817 × 10−1 

6 2.707 × 10−1 −6.539 × 10−1 

7 −2.817 × 10−1 2.730 × 10−1 

8 1.188 × 10−2 −5.623 × 10−1 

9 3.614 × 10−1 3.942 × 10−1 

10 −3.846 × 10−1 −8.561 × 10−1 

 

subjected to numerical errors. Note that similar 

dependences can be observed also in other 

directions. 

In Fig. 3, the opening stress σy is plotted for 

the angle of 180°, i.e. along the crack faces. 

Dependences in Fig. 3 prove the functionality 

of the numerical model used for the calcula-

tions: the value of the opening stress on the 

crack faces (that should be stress-free) is zero, 
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as also the stress values from the Williams 

expansion show. The non-zero σy values 

emerging in the small region in the very vicin-

ity of the crack tip represent the typical nu-

merical errors. Therefore, the stress values 

obtained in this area both in other directions 

and for other stress components should be 

considered as inaccurate/invalid. 

The typical singular stress behavior can be 

observed in Fig. 4, where for instance the 

stress component σx in dependence on the 

relative distance from the crack tip ahead of 

the crack tip (θ = 0°) is presented (depend-

ences for the other stress components are 

similar). 

Fig. 4 shows that there exist differences be-

tween the numerical solution of the stress 

distribution and the stress values calculated by 

means of the WPE. The ratio between the 

values can be about 10 ÷ 20 in a large distance 

from the crack tip if only one or two higher-

order terms of the Williams expansion are 

used for calculation of the corresponding stress 

component.  

The extent of the stress deviations depends 

on two factors. It holds that the larger distance 

from the crack tip, the higher difference be-

tween the numerical solution and the WPE 

approximation. The other dependence (on the 

number of the higher-order terms considered) 

behaves less exactly than one would expect in 

this interpretation of the results. Thus, it seems 

it is generally impossible to state which num-

ber of the higher-order terms of WPE brings 

the best results. This dependence is not as 

unambiguous as in the previous case.  
 

 

key: 

 

 

Figure 3: Demonstration of the extent of the region 

with numerical errors occuring in FE solution by 

means of displaying of the opening stress σy values on 

the crack stress-free faces (θ = 180°) 

Figure 4: Comparison of values σx determined nume-

rically and values calculated from Eq. (1) under con-

sideration of different numbers of the higher-order 

terms in WPE; angle of the path investigated θ = 0° 

 

key: 

 

 

Figure 5: Normalized σx,norm values calculated from 

WPE for various ranges of the higher-order terms; 

angle of the path investigated θ = 45° 

Figure 6: Ditto Fig. 5 for σy,norm values 
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The stress profile reconstructed by the WPE 

considerably fluctuates with changing number 

of terms of the series; however, the trend of 

improving accuracy with increasing number of 

terms is apparent. Both of the conclusions 

presented above can be better seen in Fig. 5 

and Fig. 6, where the dependences of the 

normalized σx,norm and σy,norm components for 

the angle of 45° are displayed. The stress 

components values were normalized via the 

corresponding stress values obtained from the 

numerical solution: σij,norm = σij/σij,num and 

i,j  x,y, i.e. in the ideal case σij,norm = 1, 

which means that the stress value calculated 

by WPE equals the stress value obtained nu-

merically. 

It can be seen in Fig. 5 and 6 that although 

adding of another higher-order term not al-

ways leads to better (more accurate) results, 

using only one or two terms of Williams ex-

pansion can cause considerably different stress 

values than there are in reality in the cracked 

specimen. If such stresses are subsequently 

used in a fracture criterion or any other analy-

sis, the error can arise much more. Therefore, 

estimation of the coefficients of the higher-

order terms of WPE is strongly recommended 

in order to avoid inaccuracies especially in 

larger distances from the crack tip.  

4.2 WST 

Similar analysis was conducted also in the 

case of the mode I geometry – the WST con-

figuration. Here, the values of the higher-order 

terms coefficients were determined for wide 

range of relative crack lengths in order to fit 

the results by suitable functions and thus crea-

te formulas enabling analytical recon-struction 

of the stress/displacement fields in cracked 

specimens for various crack lengths. The 

higher-order terms coefficients were evaluated 

from results of computations with several 

models varying in the near-crack-tip FE mesh 

shape. The reason of that was to introduce 

variances in the selection of (the number and 

the position of) nodes from which the dis-

placements and coordinates were taken to 

enter the ODM and thus investigate the accu-

racy of the method. Detailed description of the 

conducted study related to this issue can be 

found in [33]; here coefficients, an, of the first 

twelve terms of the WPE for selected three 

relative crack length values are presented 

(Tab. 2). Note that the values of coefficients 

correspond to the load magnitude mentioned 

above. Again, normalized values of the first 

five coefficients have been compared with 

published data [28, 29] and good agreement 

was observed [32]. 

In the case of the WST the ODM procedure 

programmed alternatively also in Mathcad 

mathematical package [42] was used.  

Table 2: Dimensionless values of the higher-order 

terms coefficients, gn, for WST geometry 

n 
gn [-] 

   α = 0.2   α = 0.5  α = 0.85 

1 2.105  4.309  2.896 × 10
1
 

2 −1.482 × 10
-1

 4.670  3.674 × 10
1
 

3 −1.796  −6.126  −1.251 × 10
2
 

4 2.014  1.140 × 10
-1

 3.796 × 10
1
 

5 −4.490  6.220 × 10
-1

 −2.101 × 10
2
 

6 −4.725 × 10
-1

 −1.616  1.547 × 10
2
 

7 1.797 × 10
1
 −5.726 × 10

-1
 −6.032 × 10

2
 

8 −3.678 × 10
1
 2.142  5.692 × 10

2
 

9 4.048  −5.065  −1.897 × 10
3
 

10 2.177 × 10
2
 1.009  1.990 × 10

3
 

11 −4.084 × 10
2
 −3.960  −6.233 × 10

3
 

12 −6.369 × 10
2
 1.353 × 10

1
 6.743 × 10

3
 

 

The calculated coefficients of the higher or-

der terms were subsequently used for approx-

imation of the stress field in the cracked body 

by means of WPE, similarly to the previous 

example. However, here the entire stress fields 

(i.e. the functions of two variables), not only 

their profiles (i.e. particular cuts), are investi-

gated.  

A procedure in Java was developed for 

handling and displaying of the reconstructions 

of the fields over the area of the specimen. The 

procedure is a subroutine of an application 

being developed for estimation of the size and 

shape (and possibly other relevant features) of 

the fracture process zone evolving around the 

tip of a propagating crack [43−45].  
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In the present study, a tool of the applica-

tion which enables determination of the plastic 

zone contours (or simply isolines at some 

defined levels of stress) is employed; the 

search for points on the plastic zone boundary 

is performed via Newton’s method. A number 

of failure criterions are implemented within 

the application; however, here only the basic 

stress tensor components used for the plasticity 

condition are presented. 

Selected results of the study on description 

of the stress fields using finite number of terms 

of the WPE, N, are shown in Fig. 7. For three 

relative crack lengths and three components of 

stress tensor, namely α = 0.2 and σy, α = 0.5 

and σx, and α = 0.85 and σ1 (from top), respec-

tively, the fields are analyticaly recon-structed 

via WPE using different ranges of its initial 

terms, namely N = 1, 2, 4, 7, and 12 (from 

left), respectively. These fields recon-

 N = 1 N = 2 N = 4 N = 7 N = 12 FEM solution 


 =

 0
.2

, 
σ

y 

     
 

 


 =

 0
.5

, 
σ
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 0
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5
, 
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1
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Figure 7: Comparison of stress fields (from top σy, σx, σ1) reconstructed by means of WPE using various ranges of terms 

of the series (from left 1, 2, 4, 7, and 12, respectively) with the numerical solution (considered as the correct one)  
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structions are interpreted through isolines (the 

scale is identical for σx and σy, but differs for 

σ1, see the scales on the left) and can be com-

pared to FE solution ploted as isoareas (con-

tours between different colours corres-pond to 

values for isolines of the analytical solution, 

see the scales on the right). Note that the FE 

solution is considered as exact and its results 

served as inputs to the ODM from which the 

values of the higher order terms were calcula-

ted. 

In some cases, mostly for the higher values 

of the last considered term, N, certain regions 

(sectors of certain range of angle, θ) are ob-

served where no solution of the plasticity 

condition was found within a distance from the 

crack tip, r, smaller than that of the specimen 

boundary. In these cases the stress isolines, 

particularly for larger distances from the crack 

tip, are not continuous. This effect is extreme-

ly visible in the case of long crack (α = 0.85), 

high value of N and low value of σ1, when 

only discrete points were found as the solution. 

From the mutual comparison of the stress 

fields’ reconstructions for different N and the 

comparison of those with the FE solution, 

following points are worth emphasizing: 

 Description of the stress fields using 

WPE under consideration of only the first 

or the first two terms is feasible only in 

very small region around the crack tip.  

 With increasing of the distance from the 

crack tip also the number of terms neces-

sary for keeping reasonable accuracy of the 

description increases. 

 In larger distances from the crack tip, the 

stress field reconstruction provided by high 

number of terms of WPE may start behave 

in rather uneven manner, which complicates 

its utilization within fracture analysis. 

 Suitable number of terms of the WPE 

which should enter the fracture analysis de-

pends on mutual relations of the specimen 

size and shape, applied load and strength 

limit. In other words, on the proportion of 

the size/shape of the region where the fail-

ure takes place to the specimen boundary. 

Of course, the type failure condition influ-

ences the choice as well. 

5 CONCLUSIONS 

It has been found out that higher-order 

terms of the Williams power expansion de-

rived for the description of the stress/displa-

cement field in a cracked specimen play a key 

role if a knowledge of accurate stress/displa-

cement fields not only very close to the crack 

tip is required. Sufficient number of higher-

order terms necessary for accurate stress and 

displacement field description within a body 

with a crack depends on the size of the region 

in question; the studies presented show that 

probably more than one or two terms, which 

are used conventionally as the well-known 

one- or two-parameter fracture mechanics, 

should be taken into account. For instance in 

the case of quasi-brittle materials, where the 

stress distribution has to be known also farther 

from the crack tip, the use of the higher-order 

terms of Williams expansion can contribute to 

more accurate and reliable fracture analysis 

and prediction of structural behaviour. 
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