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Abstract. The stress distribution in the vicinity of circular perforations has been studied by Kirsch
over a century ago [1]. Inglis extended the analysis of circular openings to elliptical holes [4] which
subsequently led to the development of linear elastic and nonlinear inelastic fracture mechanics.

This paper revisits the fundamentals of elastic stress concentrations in the proximity of circular
perforations of different diameters and presents results of an experimental series on ferrous flat bars
made of high strength steel, mild steel and cast iron. Focus is the issue whether strain hardening
and localized yielding emanating from the stress concentrations at the circular perforation explain
the puzzling effect described by Kirsch that the ultimate load capacity of the perforated bars increase
rather than decrease and definitely not by by a factor of three as expected for brittle materials when
compared to the non-perforated bars.

A newly acquired digital image correlation system sheds additional light on the development of
plastic zones and shear bands beyond the original area reduction measurements by Kirsch. Elasto-
plastic finite element simulations complement the digital image analysis with field data from com-
putational simulations of plasticity models for brittle an ductile fracture. The paper concludes with
remarks on the effect of ductility on the mode of failure, the reduction of strength due to the opening,
and the load ratio of perforated over non-perforated specimens.

1 INTRODUCTION

According to the St Venant principle the ax-
ial stress σaxial In a flat tension specimen is
uniformly distributed sufficiently far away from
the loading grips. Geometric changes in the
cross section cause loss of uniformity and re-
sult in stress concentrations which are consider-
ably larger than the nominal axial stress of the
un-notched section. In his seminal paper Kirsch
[1898] presented the linear elastic stress distri-
bution at a point P in the vicinity of a circu-
lar perforation in form of Equation 1 [5] using
polar coordinates (r, θ). In the case of a finite
flat bars the stress concentration factor diagrams

are widely reported in elementary mechanics of
materials text books. They all show that the
stress concentration factor tends to three as the
hole diameter decreases and that the factor sp-
proaches two as the hole diameter increases.

Figure 1: Schematic of a hole in an infinite plate
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Starting point of the Kirsch solution was the
linear elastic result of an infinite panel with a
circular hole under uniform tension in the far
field. It should be noted that the classical stress
concentration factor of three was re-evaluated
with higher order continuum theories and gra-
dient elasticity theories resulting in a significant
reduction of the classical stress concentration
factor three to values close to two.

σrr = σ

(
1 +

a2

r2

)
σθθ = σ

(
1− a2

r2

)
(2)

Aside from the analytical stress concentration
results of linear elasticity, Kirsch [1] presented
in his paper the results of a series of experi-
ments on cast iron and mild steel flat bars (‘Gus-
seisen und Flusseisen’) with circular perfora-
tions of different diameters in order to illustrate
the effect of the hole size on the ultimate load
bearing capacity and tensile strength of cast iron
and mild steel. His experimental results are
summarized in figure 2 which depicts the re-
duction of load capacity with hole diameter size
normalized by the load capacity of the unper-
forated bar and the nominal width of the bar
without perforation. Based on the linear elas-
tic solution of equation 1 he expected to see an
elastic stress concentration factor of three at the
edge of the circular hole for the cast iron flat
bar. However his experimental observations on
cast iron flat bars showed a reduction of the load
capacity of less the 0.9. In fact, figure 2 de-
picts the experimental observations of Kirsch in
form of the ultimate load capacity of the perfo-
rated over non-perforated specimen, indicating
less that fifteen percent reduction in contradic-
tion to the linear elasticity solution governing
brittle fracture.
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Figure 2: Load ratio with respect to nominal
hole diameter of Kirsch experiments

This raises the question whether strain hard-
ening, localized yielding and plastic deforma-
tions may explain this contradictory behavior.

In the case of mild steel, the experimental
results of Kirsch exhibit no notch sensitivity of
the load bearing capacity of the test specimen
which can be explained by the high ductility
and plastic redistribution capacity of the ma-
terial due to hardening in the region near the
stress concentrations at the lateral edges of the
circular perforation.

2 EXPERIMENTAL OBSERVATIONS
A set of experiments was performed on flat

bars with circular perforations In order to study
the effect of perforation and stress concentra-
tion on the mode of failure and elastoplastic lo-
calization.

Figure 3: Dimensions of the flat bars
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The specimens were made from cast iron,
mild steel and high strength steel while the di-
mensions of the specimens depicted in figure 3
had the same geometry as the test articles used
by Kirsch. There were ten coupons tested for
each material type and duplicate coupons for
each hole diameter, the hole diameters are 1/16,
1/8, 3/16 and 1/4 of an inch.

The flat bars were tested under uniaxial ten-
sion using displacement control and the rate of
the displacement controlled tests was kept the
same for all test samples in order to eliminate
possible strain rate effects. The tension test was
performed on a Tinius Olsen test frame of 340
kip axial capacity and the data was collected us-
ing data acquisition for axial LVDT measure-
ments and a newly acquired Digital Image Cor-
relation (DIC) system.

2.1 Experiment results
The corresponding load deformation curves

of the axial tension tests are depicted in figure
4.
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Figure 4: Load deformation curves of uniaxial
tension tests

The test data in figure 4 showed that the ulti-
mate load capacity of high strength steel speci-
mens decreased as the hole diameter increased.
while mild steel and cast iron specimens did
exhibit fluctuations in load capacity based on
the hole diameter. The summary results are de-
picted in figures 5 and 6 showing the ultimate
load capacity of notched over un-notched spec-
imen with regards to nominal hole diameter and

the ultimate nominal stress of notched specimen
at the perforated ligament over that of the un-
notched specimen.
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Figure 5: Ultimate load ratio

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 0.05 0.1 0.15 0.2

MILD STEEL

CAST IRON

HIGH STRENGTH STEEL

U
lt
.L
o
ad
	(
N
o
tc
h
ed
	S
p
ec
im
en
)

U
lt
.L
o
ad
	(
U
n
N
o
tc
h
ed
	S
p
ec
im
en
)

Hole	Diameter

Width	of	the	specimen

Figure 6: Ultimate nominal stress ratio

2.2 Failure mechanisms
The failure and fracture mechanisms in met-

als is divided into three types, ductile fracture,
cleavage and inter-granular fracture from which
the first two are the most common types.

Ductile failure has three stages which are
formation of a free surface at an inclusion or
a second phase material, void growth because
of hydrostatic stress or plastic strain and void
coalescence with the neighborhood void. Void
nucleation and coalescence are the main failure
mechanisms at the center of the specimen be-
cause of the higher density of the voids and be-
cause of the triaxiality of the stress. However
close to the free edges, the density of the voids
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decreases and shear failure becomes the domi-
nant failure pattern. This describes the failure
mechanism of mild steel specimen without per-
foration, figure 7.

Figure 7: Failure mechanism of mild steel

It should be noted that if cylindrical tension
specimens were used, a cup-cone failure pat-
tern would have been observed, but since flat
bars were used of significant thickness (t =
0.25[in]), the failure pattern is a shear domi-
nant failure mechanism through the thickness
depicted in Figure 8.

Figure 8: In depth failure mechanism of mild
steel

In the case of ductile fracture of the perfo-
rated specimens the cracks tended to grow in the
direction of maximum plastic strain, while the
global geometry constraints required the crack
to remain in-plane. Consequently, in order to
satisfy both requirements the crack grew in a
zig-zag pattern [6] resulting a cleavage failure
mechanism of the core material.

Cleavage fracture results in rapid propaga-
tion of crack in a trans-granular pattern. This
is the most common fracture pattern for brittle
metals but it should be noted that it can be pre-
ceded by ductile crack growth and plastic be-
havior. This type of failure is oriented perpen-
dicular to the direction of maximum principal
stress. This mechanism is characteristic for the

failure behavior of cast iron as can be seen in
Figure 9.

Figure 9: Failure mechanism of cast iron

The failure patterns of perforated mild steel
bars made of cast iron and high strength steel
were tested at the University of Houston are
shown in Figure 10.

(a) Cast iron

(b) Mild steel

(c) High Strength Steel

Figure 10: Failure pattern of the tested speci-
mens

Note, all cast iron specimens failed in form
of a cleavage mechanism and unstable crack
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growth pattern, while the mild steel and high
strength steel specimens failed in a ductile man-
ner with necking in the center region, shear
lips close to the edges and through-depth shear
dominant failure. Some of the specimens
showed a zig-zag failure pattern.

2.3 DIC observations
The strain field and deformations of the flat

bars were captured and analyzed using the Dig-
ital Image Correlation system. This photogram-
metric non-contact device was mounted in front
of the painted sample for continuous record-
ing the relative movement of black dots on the
white specimen during deformation. ARAMIS
software of the GOM instrument displayed im-
ages of the displacement and strain fields. In or-
der to verify the displacement readings, the ax-
ial extensions of the cast iron experiments were
compared with LVDT results and the root mean
square deviation was calculated. The results of
this comparison is tabulated in Table 1 showing
less deviation than one hundredth of the spec-
imen elongation LVDT measurement which is
the precision of the DIC technology.

Table 1: Root mean square deviation

Φ[in] 0 1/16
1/8

3/16
1/4

RMSD [in] 5E-4 4.8E-4 5.7E-4 2.4E-4 4E-4

The Mises strain distribution of the mild
steel specimens close to the failure stage is
shown in Figure 11. The shear bands are clearly
visible in these images for specimens with holes
while significant necking was observed in the
non-perforated specimens. The magnitude of
the axial strain at the edges of the hole is in the
range of 35% and is large in comparison to the
far field strain. This explains the plastification
caused by the circumferential stress concentra-
tion. It is interesting to note that the the axial
plastic strains in the non-perforated specimens
did exhibit even larger values of up to 70% in
the localized shear zones, see Figure 12..

The DIC results for cast iron show a much
smaller increase of strain at the edge of the cir-
cular perforation with no shear bands which
confirms that cast iron exhibits brittle failure,
see Figure 13.

Ф=0                    Ф=0.0625                Ф=0.125                Ф=0.1875                Ф=0.25            [in]

Figure 11: Mises strain distribution on mild
steel specimens

Figure 12: Principal strain direction in the
vicinity of the hole

Figure 13: Mises strain distribution on cast iron
specimens
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3 Finite Element Simulations
Finite element models were used to model

the behavior of mild steel and cast iron flat bars.
To this end, a linear elastic, isotropic hardening-
softening J2 plasticity model was used for mild
steel using best fit of the experimental load-
deformation of the unnotched specimens. A
maximum principal stress damage model was
used for cast iron with a very steep softening
slope for brittle failure.

3.1 J2 plasticity
Appropriate constitutive relations may be

cast in form of a local material format of en-
tropy inequality and elasticity. Omitting ther-
mal fields due to the slow nature of the tension
test, it suffices to consider only the mechanical
part of the total dissipation. Considering the
free energy density as Ψ = Ψ[ε, q] and using
the entropy inequality, the pertinent constitutive
relations for elastic and dissipative stresses are
established as follow.

(D0)mech = σ : εp +QT · q̇ ≥ 0 (3)

where q denotes the set of internal variables.
The free energy function for the linear elasticity
and isotropic hardening is described in Equa-
tion 4 where the elastic and plastic parts are de-
composed additively.

Ψ = Ψelastic[ε] + Ψplastic[κ]

=
1

2
ε : E : ε+

1

2
Hκ2 (4)

From the free energy function the stress and
hardening variable are as follow

σ =
∂Ψ

∂ε
= E : ε

K =
∂Ψ

∂κ
= Hκ (5)

The yield function of von Mises is used for the
case of mild steel and high strength steel in the
form,

F =
√

3J2 − (σy + K) (6)

The plastic multiplier is calculated based on
Prager’s consistency condition and is formu-
lated as

λ̇ =
n : E : ε̇

n : E : n+ H
(7)

where n is the gradient of the yield function
with respect to stress tensor or in geometrical
terms the normal to the yield surface. Assum-
ing associated plastic flow, the plastic potential
function is the same as the yield function and
their gradients are the same.

The plastic flow rule and the internal variable
rate are for isotropic hardening,

ε̇P = λ̇n

κ̇ = λ̇ (8)

The elastoplastic tangent operator may be as-
sembled in the differential format as follows,

Eep = E − 1

h
E : n⊗ n : E

h = n : E : n+ H (9)

In order to minimize the hardening/softening
error, the elastoplastic formulations are ex-
tended to a quadrilinear form with H1, H2

and H3 which denote the piecewise constant
hardening parameters. The constitutive model
was written in Fortran and was implemented
in Abaqus using the UMAT subroutine to inte-
grate material models. The quadrilinear hard-
ening/softening model was calibrated with the
load-deformation curve of non-perforated mild
steel specimen. The comparison of the Abaqus
model with the experimental data is depicted in
Figure 14 for verification.
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Figure 14: Calibrated model and parameters

3.2 Localization analysis
While diffuse failure refers to a material in-

stability and zero or negative values of the sec-
ond order work density, localized failure in
form of weak discontinuities reflect formation
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of jumps of the strain rates across emerging dis-
continuity surfaces. The localization is caused
by the jump of velocity gradients across the dis-
continuity surface in Equation 10. Thereby the
velocity field is assumed to remain C0 continu-
ous.

[[u̇]] = u̇+ − u̇− = 0

[[∇u̇]] = ∇u̇+ −∇u̇− 6= 0 (10)

The ’+’ and ’−’ signs refer to the positive and
negative sides of the discontinuity surface. In
order to satisfy the Maxwell compatibility con-
dition, the jump in the velocity field should have
the form

[[∇u̇]] = γ̇M ⊗N (11)

where N is the normal to the localization sur-
face and M is the polarization vector. In the
case that N is equal to M the localized failure
is mode I or opening and whenN is perpendic-
ular toM is mode II or shear. The discontinuity
in the strain rate field is defined as,

[[ε̇]] = [[∇u̇]] =
1

2
γ̇(M ⊗N +N ⊗M) (12)

According to Cauchy’s lemma the traction
rate remains continuous across the discontinu-
ity surface which leads to the localization con-
dition as follows,

M .Qep.M = 0 (13)

where Qep is the elastoplastic second order lo-
calization tensor as follows.

Qep = N .Eep.N

Q = N .E.N (14)

For in-plane 2D finite element analysis, the lo-
calization direction may be stipulated in plane
stress or plane strain. In the case of plane stress
and uniaxial tension, the critical localization an-
gle is θcrit = 35.26◦ and for plane strain it is
θcrit = 45◦. So it is expected to see a 35.26◦

localization direction in the case of mild steel
and high strength steel specimens. For the case
of plane stress and plane strain the directional
properties of the elastoplastic over elastic local-
ization tensors are plotted for in Figure 15.
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Figure 15: Elastoplastic localization study

3.3 Maximum principal stress damage
model

The material parameters of cast iron are
calibrated based on the non-perforate load-
deformation curve which is depicted in Figure
16.
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Figure 16: Cast iron calibration data

Based on the calibrated data, a linear elastic
with maximum principal stress damage model
was implemented in Abaqus in order to model
the behavior of the perforated flat bar in uniax-
ial tension. In order to adequately model the
behavior of cast iron and crack trajectory, the
XFEM capability of Abaqus was activated and
incorporated in the finite element model using
Rankine’s condition of maximum tensile stress
for crack initiation and crack extension.

In classical finite elements s crack are re-
quired to follow inter element boundaries when
remeshing is to be avoided. In contrast in
XFEM this is no longer required since the
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method adds additional degrees of freedom
to the nodes of the elements intersected by
the crack without changing the discretization.
Therefore a single mesh is adequate to capture
any crack path and length. The nodes of the el-
ements that contain the crack tips are enriched
by eight additional degrees of freedom, four de-
grees of freedom of the crack tip function for
each Cartesian direction, and the nodes of the
elements that contain the crack are enriched by
two additional Heaviside functions multiplied
by the element shape functions.
uxfem(x) =

∑
i

Ni(x)ui +
∑
i

Ni(x)H(x)ai +

∑
i

[
Ni(x)

4∑
α=1

Fα(x)biα

]
(15)

3.4 Results
The calibrated model for the non-perforated

tension test is compared with the test results of
the specimen with the hole diameter equal to a
quarter of an inch. The comparison of the load-
deformation data for mild steel and cast iron
specimens are depicted in Figures 17 and 18.
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Figure 17: Comparison of the calibrated model
with experimental data, mild steel

Using the calibration of the unnotched speci-
men, the finite element analysis of a quarter of a
mild steel specimen was performed for different
hole sizes. The axial plastic strain distribution
and axial stress distribution in the vicinity of the

perforation are plotted and compared in Figures
19 and 20 consequently.

From these figures, the plastic field for mild
steel exhibits an inclined failure mode direc-
tion that confirms the observations of DIC, in
close agreement with the localization direction
for plane stress due in spite of the finite thick-
ness of the flat bar.
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Figure 18: Comparison of the calibrated model
with experimental data, cast iron

Figure 19: Longitudinal plastic strain distribu-
tion in the vicinity of the hole for different hole
sizes, mild steel
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Figure 20: Longitudinal stress distribution in
the vicinity of the hole for different hole sizes,
mild steel

The stress distribution before cracking and
the crack extension path of the perforated cast
iron specimens are shown in figures 21 and 22
which illustrate the finite element results using
the damage model and XFEM in Abaqus.

Figure 21: Longitudinal stress distribution for
cast iron prior to crack

Figure 22: Crack propagation path for cast iron
specimen

The longitudinal stress redistribution during
the crack propagation for the cast iron specimen
in the failure ligament is depicted in figure 23.
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Figure 23: Stress redistribution during the crack
propagation, cast iron

Figure 23 shows that the stress concentration
zone is moving along the crack path behind the
crack tip. The non zero value of the stress in the
cracked region is due to the presence of the co-
hesive zone which infers that the two separated
parts are still connected until the crack reaches
the other edge of the specimen. Finally at the fi-
nal stage when the flat bar is separated into two
parts, the axial surface tractions become zero at
the crack surfaces.
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4 CONCLUDING REMARKS
The effect of stress concentrations in plates

with circular perforations is discussed. Kirsch’s
paper is reviewed and his experiments for mild
steel and cast iron are discussed and visualized.
Although a factor two to three reduction in load
capacity is expected, the reduction of perforated
specimens is considerably less than fifteen per-
cent and exceeds in some cases the capacity of
unperforated bars. To understand this puzzling
behavior a set of experiments for mild steel and
cast iron are presented and discussed. It was
confirmed that the reduction of the ultimate load
capacity of cast iron is far less than 1/3 in accor-
dance with the experimental results of Kirsch.

The DIC results showed that the localized
plastic zones were present at the edge of the cir-
cular perforations for cast iron, figure 24, which
reduced the stress concentration and increased
the ultimate load capacity of the cast iron spec-
imen to nearly 90% of the unperforated speci-
mens.

Figure 24: Localized plastic zones on cast iron
specimens

In the case of mild steel, the elastoplastic
FE model, localization analysis and DIC results
all confirmed the experimental observations and
the formation of shear bands and active plas-

tic deformations involved in reducing the stress
concentration effect and maintaining if not ex-
ceeding the ultimate load capacity of the unper-
forated bars.
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