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Abstract: This paper focuses on the prediction of edge debonding for a concrete beam retrofitted 

with a fiber-reinforced polymer plate. This failure mechanism, also known in the literature as plate-

end debonding, stems from the concentration of interfacial stresses arising at the termination of the 
strengthening plate. Early models of edge debonding adopted failure criteria based on interfacial 

stresses. However, due to the typically catastrophic nature of this failure mechanism, approaches 
based on linear elastic fracture mechanics (LEFM) are becoming increasingly established. In this 

paper, the problem is addressed by means of the cohesive crack model. This model is able to bridge 
the gap between the stress- and the energy-based approaches and nevertheless has been used in a 

very limited number of analytical studies to date. Based on a cohesive interface law with linear 
softening, closed-form solutions for the interfacial stresses and the load-displacement curves, as 

well as for the ultimate load, are derived. A parametric analysis shows that for sufficiently brittle 

interfaces both snap-back and snap-through instabilities may arise. As the interface ductility 

increases, the snap-back disappears and finally a monotonic load-displacement curve is obtained. 

LEFM is shown to provide unconservative estimates, which justifies the need for the proposed 

approach. 
 

1 INTRODUCTION 

Among the strengthening techniques for 

civil engineering structures and in particular 
for concrete structures, bonding of fiber-

reinforced polymer (FRP) sheets is nowadays 

widely employed. The advantages of this 

technique are several. FRP laminates are easy 

to install and cause a minimal increase in size 

of the structure; furthermore, they possess high 

strength, light weight and excellent durability. 

The structural behaviour of FRP-

strengthened members is substantially 

different from that of the original 

unstrengthened members and, even more 
importantly, new failure modes may occur [1-

2]. Among the observed failure modes, the so-

called edge debonding of the FRP plate (also 

known as plate-end debonding) deserves a 

special attention because of its catastrophic 

nature. The present paper focuses on the 

analytical prediction of this failure mechanism. 

Early predictive models of edge debonding 

failure were based on setting limits for the 

stresses at the FRP-concrete interface [3-4]. 

However, because of the brittleness of the 

debonding process, an energy approach seems 
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to be more effective, since stress-based failure 

criteria are more suitable for gradual and 

ductile failures. Energy-based fracture criteria 

have been recently proposed by Rabinovitch 

[5], Colombi [6] and Carpinteri et al. [7] by 

applying the Linear Elastic Fracture 

Mechanics (LEFM) concept of strain energy 

release rate. 

With the objective to bridge the gap 

between the stress- and energy-based 

approaches, in the present paper the problem is 

addressed by means of the cohesive crack 

model. While several investigations on the 
debonding process in FRP-concrete joints 

subjected to pure shear have adopted the 
cohesive crack model either in analytical [8-

12] or in numerical form [13-14], limited 
studies have been conducted on cohesive crack 

modeling of interfacial stresses in plated 
beams [15-18]. While Refs. [15] and [18] 

focus on numerical methods, Refs. [16] and 

[17] present the first cohesive crack analytical 

solutions for edge debonding of a beam under 

three-point bending (TPB) and constant 

bending moment, respectively. 

The present work focuses on edge 

debonding of an FRP strengthened beam under 

a TPB loading condition, extending previous 

results given in Carpinteri et al. [7] and De 

Lorenzis & Zavarise [16]. After derivation of 

the interfacial stresses during the various 

stages of the interfacial behavior, the attention 

is focused on the load vs. mid-span deflection 
curves, thereby highlighting the possible 

occurrence of snap-back and snap-through 
instabilities. A closed-form implicit formula 

for the value of the load causing unstable 

propagation of the debonding crack according 

to the cohesive model is derived and 

discussed.  

Throughout this paper, linear-elastic 

behavior for all materials is assumed and all 
non-linearities are concentrated at the 

interface. While being an oversimplification of 
the actual behavior, this assumption is suitable 

to highlight the essential features of the 
debonding process and the role played by the 

most significant variables.  
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Figure 1: Geometry of the strengthened cross 
section. 

2 EQUIVALENT BEAM MODEL AND 

LINEAR ELASTIC FRACTURE 

MECHANICS 

The easiest model for plated beams is the 

so-called equivalent beam (EB) model, based 

on the assumption of a planar cross section for 

the whole structure. Let us refer to a beam 

with a rectangular cross section (Fig. 1) 

strengthened by an FRP strip at its bottom. In 

the following, the quantities with subscript “b” 

refer to the beam to be strengthened and the 

ones with subscript “r” to the reinforcement. 

Thus Eb, Er are the Young moduli of the beam 

and of the reinforcement; hb, hr are their 
respective thicknesses; tb and tr their widths. 

The mechanical percentage of reinforcement is 
therefore: 

bbb

rrr

thE

thE
=ρ  (1) 

Usually, the thickness of the FRP strip is at 
least two orders of magnitude smaller than the 

beam height. Hence, when computing the 
centre of gravity and the moment of inertia of 

the reinforced section, the powers of the hb/hr 

ratio with exponent greater than or equal to 

two can be neglected if compared to unity. 

Thus the position yG of the centre of gravity of 

the reinforced section (with respect to the 

bottom of the beam) and its moment of inertia 

(with respect to the xG axis) read (Fig. 1): 
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where Ib = tb hb
3
 / 12 is the moment of inertia 

of the plain beam section. 
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Figure 2: An FRP-strengthened beam in a three point 
bending configuration. Symmetry is exploited to 

study only half of the structure. 

Let us consider a TPB geometry (Fig. 2). 

The beam span is 2l and P is the concentrated 

load. The length of the FRP strip (i.e. the 

initial bond length) is 2zr. If z is the axial 

coordinate with origin at the beam mid-span, 

on the left side of the beam the shear force is T 

= P/2 and the bending moment is M = −P(l–
z)/2.  

For fixed load conditions, the strain energy 
release rate is given by the derivative of the 

strain energy with respect to the crack area A, 

which is equal to the product of the crack 

length a times its width tr. Hence, the 
equivalent beam model yields: 

r
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zz
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IE
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
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−=

Φ
=G  (3) 

Hence, by eqn (2): 

b
3
bbr

2
r

2
)(

)41(2

9

Ehtt

zlP −
ρ+

ρ
=G  (4) 

According to LEFM, debonding occurs 
whenever G  reaches its critical value Gc, i.e. 

the fracture energy. The failure load PLEFM is 

therefore: 

rrc
r

br
LEFM 2

3

41
hE

zl

ht
P G

−ρ

ρ+
=  (5) 

Eqn (5) shows that the debonding process is 
unstable, since the load causing the FRP 

debonding decreases as the bond length zr 
decreases. This catastrophic behavior, typical 

of plated beams failing by edge debonding, 

explains the considerable attention of 

researchers on this failure mechanism. In the 

following sections, a new estimate for the edge 

debonding load will be given on the basis of a 

more refined, although still analytical, model. 

It will also be shown that the LEFM estimate 

(5) is an upper bound. Thus, although LEFM is 

able to provide by a simple formula a rough 

estimate of the debonding load, it must be 

emphasized that this value does not represent a 

conservative prediction. 

According to the EB model, the elementary 
beam theory provides the following value for 

the mid-span deflection vEB: 



















 −
ρ+
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+=

3
r

b

3

EB 1
1

3
1

48

)2(

l

z

IE

lP
v  (6) 

where the term outside the square bracket 

represents the mid-span deflection if the beam 
were reinforced over the whole span; or, 

equivalently, the second term inside the square 
bracket represents the relative increment of 

deformability due to a bond length zr shorter 

than the beam length l. 

For an ideal test where it is possible to 

control the advancement of the debonding 

crack (i.e. zr), the load-displacement curve is 

simply given by eqns (5) and (6) (provided 

that eqn (5) is substituted into eqn (6)) while 

the bond length decreases from its initial value 

to zero. A typical plot is drawn in fig. 3, where 

the load and the displacement have been 

normalized by their respective values at the 

onset of debonding. After a linear elastic 

loading phase, debonding starts and it ends 

when the FRP plate is completely detached. 

Then the load can increase again, the loading 

curve being now represented by the straight 

line characterizing the linear elastic behavior 
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of the unstrengthened beam. Up to a 

multiplicative factor, the area between the 

thick curve and the dashed line represents the 

energy spent to separate the reinforcement 

from the beam. It is evident that a snap-

through instability occurs if the test is load-

controlled and that a snap-back instability 

takes place if the test is mid-span 

displacement-controlled. 
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Figure 3: Dimensionless load vs. displacement curve 

according to LEFM (ρ = 0.4, zr/l = 0.7). 

3 GOVERNING EQUATIONS 

The EB model presented in the previous 
section does not take into account the interface 

compliance nor its softening behavior. It is 
easily argued that, wishing to tackle the 

debonding process, a more realistic description 
of the FRP-concrete interface is needed. Since 

our goal is the development of an analytical 
model, we introduce the simplifying 

assumption that the interface works as a shear 

lag, i.e. it transfers stresses from the beam to 

the FRP reinforcement by means of tangential 

stresses only. In other words we are neglecting 

the peeling stresses, an assumption that in the 

present geometry appears reasonable due to 

the small bending stiffness of the FRP 

reinforcement. 

While in the EB model the section of the 

composite beam is assumed to be planar, in the 

present model cross sections remain planar 

after deformation only inside the beam: 

( ) ( ) ( ) yzzwz,yw bb0b ϕ+=  (7) 

where wb is the axial displacement field of the 

beam, ϕb is the rotation of the cross section at 
the distance z from the mid-span and wb0 is the 

axial displacement of the points at the bottom 

of the beam. Denoting by εb and εr the strains 

of the beam and the reinforcement, 

respectively, and by wr the axial displacement 

of the reinforcement, the assumption of a 

linear elastic behaviour for concrete and the 

reinforcement yields: 

=
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d r
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where χb is the beam curvature and εb0 is the 

strain at the beam intrados. On the other hand, 

the shear stress τ(s) at the interface is assumed 

to be a function (which will be specified in the 
next section) of the relative displacement s 

between the FRP and the beam intradox: 

r0b wws −=  (10) 

The normal stress distribution along each 

cross section has to be equivalent to the axial 
force (which is equal to zero) and to the 

bending moment M. In formulae: 

0d rr

0

b

b

=σ+σ∫ htyt r

h

b  (11) 

Myty

h

=σ∫
b

0

bb d  (12) 

where the contribution of the reinforcement to 

the bending moment has been neglected due to 

its small thickness. Substituting eqns (8-9) into 
eqns (11-12), two algebraic equations are 

obtained from which it is possible to express 
the strain at the bottom of the beam and the 

beam curvature as a function of the strain in 
the FRP: 
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It is now convenient to express all the 

unknown variables as functions of the relative 

displacement s. Deriving eqn (10) and using 
eqn (13) yields: 
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The longitudinal equilibrium equation of 

the FRP strip is: 

0)(
d

d r
r =τ+

σ
s

z
h  (16) 

Deriving eqn (15) and substituting the result 

into eqn (16) together with eqn (9), the final 

governing second order differential equation in 

the unique unknown variable s is obtained: 

b
2
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2

2 3
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41

d
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Eht
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hEz

s
−=τ

ρ+
−  (17) 

4 COHESIVE LAW OF THE 

INTERFACE 

The interface is assumed to be 

macroscopically described by the τ vs. s 

function. Such a relation takes into account the 
shear deformability and the progressive 

damage mechanisms taking place both in the 

adhesive layer used to bond the FRP sheet to 

the concrete, and in the superficial layer of the 

beam involved by the interfacial stress transfer 

[13]. 

Here we assume that the mechanical 

behavior of the interface can be satisfactorily 

described by a bi-linear law as represented in 

Fig.4: τp is the peak stress, sp the 

corresponding relative displacement and sf the 
final relative displacement, i.e. the value after 

which the reinforcement is considered 
completely detached from the concrete beam. 

The initial (elastic) stiffness of the interface is 

denoted by k = τp/sp and the interfacial fracture 

energy is equal to Gc = τpsf / 2. Introducing the 

ratio µ = sf /sp and the dimensionless relative 

displacement δ = s/sp, the cohesive law can be 

given analytically as: 













µ>δ

µ≤δ<
−µ

δ−µ

≤δ≤δ

=δ=
τ

τ

 if           ,0

1 if   ,
1

10 if          ,

)(
p

f  (18) 

By normalizing the axial coordinate and the 

length of the FRP with respect to the beam 

length, i.e. ζ = z / l and ζr = zr / l, and the load 

with respect to the LEFM estimate (5), i.e. Π = 
P / PLEFM, the governing equation can be set in 

dimensionless form as: 

Π
ζ−

µα
−=δα−

ζ

δ

r

2

2

2

1
)(

d

d
f  (19) 

where the dimensionless parameter α depends 

on the geometric and elastic properties of the 

materials. It is worth observing that, up to the 

factor (1+4ρ), α2
 can be seen as the ratio 

between the tangential stiffness of the interface 

and the axial stiffness of the reinforcement: 

rr

2
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Figure 4: Interfacial cohesive law with linear 

softening. 

5 ANALYSIS OF THE INTERFACE 

BEHAVIOR 

In this section we analyze the evolution of 

the stress and displacement fields along the 

interface during loading. This process consists 

in three stages: the elastic stage, the elastic-

softening stage and the elastic-softening-

Dimensionless relative displacement (s/sp) 
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debonding stage. 

5.1 Elastic stage 

During the first stage the whole length of 

the interface is in the elastic regime (δ < 1). 
The boundary conditions prescribe a null 

relative displacement at the mid-span (because 

of symmetry) as well as a vanishing axial 

stress in the reinforcement at its edge, i.e. εr = 
0 at z = zr. By means of eqn (15), the 

differential problem (19) becomes:  









µαΠ=ζδ′=δ

ζ≤ζ≤Π
ζ−

µα
−=δα−

ζ

δ

)(  0,(0)

0, 
1d

d

r

r
r

2

2

2

 (21) 

yielding: 

[ ]








αζ
ζ−ζα−αζζ−α

+⋅

⋅
ζ−α

µΠ
=ζδ

)cosh(

)(cosh))sinh(1(
1

)1(
)(

r

rr

r
 (22) 

It is evident that the interfacial relative 

displacement, as well as the shear stress, 

increase monotonically along the axial 

coordinate, reaching the maximum value at the 

FRP edge. Since the interface is still 
completely elastic, the stress and displacement 

fields are both proportional to the applied load. 
The elastic stage ends when the shear stress 

reaches the peak value of the cohesive law, i.e. 

when δ(ζr) = 1. We denote by Πel the 

corresponding limit elastic load, which, 
according to eqn (22), is equal to: 

[ ]1))sinh(1()cosh(

)cosh()1(

rrr

rr
el

−αζζ−α+αζµ

αζζ−α
=Π (23) 

5.2 Elastic-softening stage 

Once the interfacial shear stress reaches the 

peak value at the termination of the plate,  the 

interface enters the elastic-softening stage and 

the shear stress peak starts moving from the 

edge towards the mid-span. We denote the 

(dimensionless) position of the peak by ζ . 

This parameter controls the debonding 

process. During the elastic-softening stage,  ζ  

decreases from ζr to ζ23, the latter being the 
value (computed later) at which the second 

stage ends and the third one begins. 

During this second stage, the central portion 

of the reinforcement is still in elastic 

conditions, whereas the regions close to the 

edges have entered the softening regime but 

are not yet debonded from the substrate. It is 
therefore necessary to solve two differential 

problems. The first one refers to the elastic 
zone: 









=ζδ=δ

ζ<ζ≤Π
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with solution: 









ζα
ζ−ζα+αζ

−⋅

⋅
ζ−α

µΠ
+

ζα
αζ

=ζδ

)sinh(

)](sinh[)sinh(
1

)1()sinh(

)sinh(
)(
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The second problem holds for the softening 

zone. Hence the second branch of the 
interfacial cohesive law (18) must be inserted 

into the governing eqn (19), while the second 

boundary condition coincides with the one 

holding for the elastic stage: 






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with solution: 

{

[

] })(cos)(cos

)(sin)1(
)1(

)(cos
)(cos

1
)(

r2r2

2r2

r2
r2

ζ−ζα−ζ−ζα+

+ζ−ζαζ−α
ζ−α

µΠ
−

+ζ−ζα
ζ−ζα

−µ
−µ=ζδ

r

 
(27) 

where, for the sake of simplicity, we 

introduced the quantity α2 = α / √(µ−1). 

At the elastic-softening stage the load 

corresponding to each value of ζ  is 

determined by the condition of stress 

continuity in the FRP at the boundary between 

the elastic and softening regions. According to 

eqn (15), this condition corresponds to 
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enforcing the continuity of the first derivative 

of the displacement field at ζ=ζ , i.e.: 

)()( rr
−+ ζσ=ζσ    ⇒   )()(

−+ ζδ′=ζδ′  (28) 

which yields: 

1

r2

r2r

r

)]ctanh()](tan[1

)csech()]()sec[1(
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







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ζα+ζ−ζα−µ

ζα−ζ−ζαζ−α
+⋅

⋅
µ

ζ−α
=Π

(29) 

The maximum load Πmax is attained during 

the elastic-softening stage. In order to compute 

the position ζmax of the peak stress at which the 

load reaches its maximum value, it is sufficient 
to compute the first derivative of eqn (29) and 

set it to zero. Analytical manipulations lead to 

the following simple implicit equation in ζmax: 

1)](tan[)tanh( maxr2max −µ=ζ−ζαζα  (30) 

which has to be solved numerically for roots in 

the range ζ23<ζmax<ζr. The maximum load is 

finally computed by setting maxζ=ζ  in eqn 

(29). Note that, in case of multiple solutions, 

the largest root (i.e. the closest to ζr) has to be 

considered when solving eqn (30). On the 

other hand, the possible absence of a solution 

means that the load increases monotonically 

during the debonding process and no snap-

through instability arises (see Section 6). 

In many practical cases, the quantity (α × 

ζmax) is much larger than unity, so that the 

hyperbolic tangent in eqn (30) can be set equal 

to 1 in engineering calculations. Hence, from 

eqn (30) the value of ζmax can be achieved 
explicitly. Its substitution in eqn (29) provides 

the following approximate expression of the 
debonding load:  

1

rLEFM

max
max

)1(
1

−













ζ−α

µ
+≅=Π

P

P
 (31) 

Since the right hand side is always smaller 
than unity, we conclude that the critical load 

estimate provided by LEFM is always larger 
than the one given by the cohesive crack 

model. The unconditional application of 
LEFM is therefore potentially dangerous. Note 

that the difference between the two predictions 

vanishes for an infinitely stiff interface 

(α→∞), while it is more pronounced for 

relatively ductile interfacial behavior (high µ 

value). 

Eqn (31) was already derived in [16]. With 

respect to the exact value given by eqns (29-

30), eqn (31) yields very accurate results 

provided that the softening branch after the 

peak is relatively sharp. For a mild softening 

branch, peak load predictions by eqn (31) are 

less accurate, finally becoming physically 
meaningless in case of a monotonically 

increasing load, i.e. when the peak disappears. 
However, this condition is met only for rather 

ductile interfaces, as will be shown in Section 
6. 

 5.3 Elastic-softening-debonding stage 

The third and last stage begins when the 

relative displacement at the FRP edge reaches 

the maximum value sf, after which the 

reinforcement is completely detached from the 
concrete support. In dimensionless form, the 

debonding starts when δ(ζr) = µ. According to 

eqns (27) and (29), this condition is met when 

the position ζ  of the peak load is the root of 

the following equation: 

)]ctanh()](tan[1

)csech()]()sec[1(

)](cos[)]()sin[1(

r2

r2r

r2r2r

ζα+ζ−ζα−µ

ζα−ζ−ζαζ−α
=

=ζ−ζα−ζ−ζαζ−α

 (32) 

where, in case of multiple roots, the largest 

value (denoted as ζ23) has to be taken. 

During the third and last stage, the initial 

coordinate of the detached portion of the plate 

moves gradually from the FRP edge towards 

the mid-span. Correspondingly, the position 

ζ of the stress peak travels from ζ23 to 0. 

However it is not necessary to solve any 

additional differential problem, since the 

solution is the same as in a strengthened beam 

of reduced reinforced length at the end of the 

second stage. 

From a computational point of view, this 

stage can be followed by letting ζr (which is 
now the controlling parameter) vary from the 

initial value to 0. The corresponding position 
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ζ  of the peak stress is hence obtained by 

solving eqn (32) for any ζr value and the 

related load is given once more by eqn (29). 

Care needs to be taken in normalization: since 

the dimensionless load provided by eqn (29) 

refers to the actual reinforcement length zr,act, 

the load normalized with respect to eqn (5) 

(related to the initial reinforcement length zr) is 

achieved multiplying the result by the ratio 

(l−zr,act)/(l−zr). 

6 LOAD VS. DISPLACEMENT CURVE 

AND POST-PEAK INSTABILITIES 

Aim of the present section is to obtain the 

load vs. mid-span displacement curve for a 

strengthened beam under TPB during the 

different stages of the interfacial behavior. In 

order to evaluate the mid-span deflection we 

start from the beam curvature χb, which, 

according to eqns (14) and (15) is given by: 


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z
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)41(

6
)(

rrrbb
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By integration we obtain the rotation ϕb of the 

generic cross section as: 


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Neglecting shear deformability in the 

concrete beam, ϕb = −v′. The transverse 

displacement is thus given by: 

∫ϕ−=
l

z

zzzv )d()(  (35) 

The desired value of the mid-span 

deflection is obtained for z = 0. For the sake of 

simplicity we denote simply with v this value, 
equal to: 
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where the first term on the right-hand side 

represents the mid-span deflection that would 
be obtained from the EB model if the beam 

were strengthened over its entire length. Some 
analytical manipulations allow us to rewrite 

eqn (36) as: 
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where now the first term is exactly the mid-
span displacement given by the EB model (see 

eqn (6)). The second term is the increment in 
deformability due to the compliance of the 

interface. Obviously, for an infinitely stiff 

interface, the relative displacement vanishes (δ 

≡ 0) and the mid-span deflection coincides 

with the one predicted by the EB model. 
The mid-span displacement is finally 

computed, for the various behavioral stages of 

the interface, upon substitution of the relative 

displacement field δ(ζ) (eqns (22), (25) and 
(27)) into eqn (37). It is worth noting that, 

during the second and third stages, the integral 

has to be split into two parts, one for the 

elastic and one for the softening regions: 

ζζδ+ζζδ=ζζδ ∫∫∫
ζ

ζ

ζζ

d)(d)(d)(

rr

00

 (38) 

The integrals in eqn (38) can be easily 

computed analytically. Since their explicit 
expressions are rather long, they are omitted 

herein but will be provided integrally in a 
forthcoming paper. 

As done in Section 2, the load and the mid-

span deflection can be normalized with respect 

to their values at the onset of debonding 

evaluated according to LEFM. While the 

LEFM curve depends only on the relative 

bond length ζr and the mechanical 

reinforcement fraction ρ (which govern the 
difference in slope between the initial 

strengthened configuration and the final 

unstrengthened geometry), the load vs. 

displacements curves obtained by the cohesive 

crack modeling depend also on the 

dimensionless parameters α (eqn (20)) and µ 

(eqn (18)). While the former one is a function 

of the geometric and elastic properties of the 

materials, the latter one (µ ≥ 1) describes the 

structural behavior of the interface (µ = 1 
describing an elastic-perfectly brittle interface 

and µ → ∞ an elastic-perfectly plastic 

interface). In this preliminary parametric 



P. Cornetti, M. Corrado, A. Carpinteri and L. De Lorenzis 

 9

analysis, we investigate the effect of this 

second parameter, fixing the other ones to the 

following values: ρ = 0.4; ζr = 0.7; α = 10. 

The relatively high and somehow unrealistic ρ 

value has been chosen to emphasize the 

difference between the initial and final elastic 

stiffness, so that the plots are easier to 

understand. 

For the parameter µ we chose the following 
values: 6, 12, 24. The corresponding 

interfacial cohesive laws are plotted in Fig. 5, 

denoting a more ductile behavior as µ 

increases. 
 

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

 

Figure 5: Interfacial cohesive law with fixed elastic 

stiffness and fracture energy: µ = 6 (thin line), µ = 12 

(dashed line), µ = 24 (thick line). 

The three load vs. mid-span deflection 

curves corresponding to the three µ values are 

plotted in Fig. 6. In each figure, the LEFM 

prediction has also been plotted for the sake of 

comparison. It is evident that the cohesive 

crack model predicts a less brittle response 

with respect to LEFM, thus evidencing a less 

catastrophic structural behavior. However it is 

worth noting that the peak load (a local 

maximum in this case, the beam material being 
considered infinitely strong) is always lower 

than the one predicted by LEFM, whose 
application must hence be considered as 

unconservative. Note also that the present 
cohesive model collapses onto the LEFM 

model for µ→1 (elastic-perfectly brittle 

interface) and α→∞ (infinite stiffness 

interface). 
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Figure 6: Load vs. displacement curves for µ = 6 (a), µ 

= 12 (b) and µ = 24 (c). The arrows denote possible 
instabilities according to the test control. 
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Figure 7: Dimensionless load vs. displacement curves 

for µ = 6, 12, 24. 

In Fig. 6 the lines referring to the elastic 

stage are marked in green; the blue portions of 

the curves correspond to the elastic-softening 

stage (where the peak is achieved); the red 

branches are related to the elastic-softening-

debonding stage. Since the fracture energy is 

fixed (see Fig. 5), the area between the load-

displacement curves and the straight line 

corresponding to the unreinforced structure is 

the same for all curves, being proportional to 
the energy spent to obtain the complete 

detachment of the FRP plate from the concrete 

substrate. 

As far as the post-peak instabilities are 

concerned, we note that for sufficiently brittle 

interface (e.g. for µ = 6, see Fig. 6a), both the 

snap-back and the snap-through instabilities 

may occur, since the softening branch contains 

a region with positive slope. The slope of the 

softening branch becomes entirely negative for 

µt11, therefore only the snap-through 

instability appears if the test is load-controlled 

(see Fig. 6b, where µ = 12). For higher µ 

values (µt21), the load-displacement curve is 

monotonically increasing and no instabilities 

are to be expected (as in Fig. 6c, where µ = 

24). For the sake of comparison, in Fig. 7 the 
three load-displacement curves have been 

plotted on the same graph. 

7 CONCLUSIONS 

In this paper we presented an analytical 

approach for prediction of the edge debonding 
of a thin FRP plate from the soffit of a 

concrete beam. The approach is based on 
cohesive crack modeling of the interface 

between FRP and concrete. The analysis is an 
extension of previous results of the same 

authors [7, 16], but it can also be seen as an 
extension of previous studies dealing with the 

(simpler) pull-push geometry (e.g. [8]) to 

debonding failure under TPB loading. 

After deriving the analytical expressions of 

the relative displacement between the 

reinforcement and the beam intrados, the 

attention was focused on the global structural 

behavior of a strengthened beam under TPB, 

as well as on the instability mechanisms that 

may occur. We further showed that simple 

LEFM predictions of the failure load are 

unconservative, thus justifying the need for the 

proposed more refined approach. 
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