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Abstract: In the present paper we analyze the competition between different failure mechanisms 
in fiber reinforced polymer (FRP) strengthened beams. Attention is focused on a three-point 
bending test of a concrete specimen reinforced by a FRP strip at the bottom. We analyze the 
competition between the growth of a flexural crack in the concrete beam along its mid-span cross 
section and the growth of a debonding crack along the concrete-FRP interface starting from the 
mid-span. This latter phenomenon is usually referred to in the literature as intermediate crack-
induced debonding (IC-debonding). For what concerns the IC-debonding, the crack growth is 
described by an analytical approach based on Linear Elastic Fracture Mechanics (LEFM). This 
choice corresponds to assume an interface between FRP and concrete with an elastic-perfectly 
brittle behavior and is justified by the brittleness of the debonding phenomenon. On the other hand, 
the flexural crack is modeled numerically by means of a cohesive crack, since the cohesive zone 
model is believed to be more effective to describe crack propagation in the cementitious matrix. The 
two failure mechanisms are connected since the force in the FRP reinforcement tends to avoid the 
opening of the flexural crack and, vice-versa, the presence of the flexural crack induces a force 
increment in the FRP strip that can cause the delamination. Furthermore, the model is also extended 
to take the concrete crushing failure into account by means of the overlapping crack model, recently 
developed to describe this failure mode in reinforced concrete beams. The competition and interplay 
between the different failure modes, as well as the effect of the relevant parameters on the structural 
behavior, are analyzed in terms of load-displacement curve. 
 
 

1 INTRODUCTION 
Structural rehabilitation is required 

whenever design mistakes, executive defects 
or unexpected loading conditions are assessed. 
Retrofitting techniques may be required in 
order either to increase the load carrying 
capacity of the structure, or to reduce its 
deformations. Among the different 
rehabilitation strategies, bonding of FRP strips 
is becoming more and more popular, 
especially for what concerns concrete 
structures [1]. The advantages of this 

technique are several. FRP strips are versatile, 
easy to install and cause a minimum increase 
in dimension; furthermore, they have a high 
strength, a light weight and a long durability. 

The structural behavior of FRP-
strengthened members is substantially 
different from that of the original 
unstrengthened structures and, even more 
important, new failure modes may occur. 
Generally speaking, we can list six different 
failure mechanisms: concrete cover separation, 
Plate End (PE) debonding, Intermediate Crack 
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(IC) induced debonding, beam failure due to a 
critical diagonal (shear) crack (CDC), concrete 
crushing at the extrados, FRP rupture. 

Among the various failure modes observed, 
a special interest has been recently devoted to 
the PE debonding of the FRP because of its 
brittle and catastrophic features, the 
propagation of the interfacial crack being 
highly unstable. It is worth noting that PE-
debonding of the reinforcement strip is a 
failure mechanism that may occur both in 
concrete as well as in metallic FRP-
strengthened beams. On the other hand, 
concrete beams may fail because of an 
interfacial crack in its turn induced by a 
flexural crack inside the concrete member. 
This failure mechanism is named IC-
debonding and is characterized by an 
interfacial crack running toward the edge, i.e. 
in the opposite direction with respect to what 
happens in the PE-debonding failure 
mechanism. 

For what concerns the PE-debonding, 
several models have been proposed to evaluate 
the interfacial stresses at the edge of the FRP 
plate. An accurate review of these models can 
be found in [2]. However, because of the 
brittleness of the debonding process, an energy 
approach seems to be more effective. In this 
respect, Linear Elastic Fracture Mechanics 
(LEFM) has been applied to analyze PE-
debonding by Rabinovitch [3] and, more 
recently, by Carpinteri et al. [4,5], where the 
rising of snap-back and snap-through 
instabilities according to test control have been 
highlighted. 

In order to take into account also the IC-
debonding, the model was later extended [6] 
by applying LEFM to a retrofitted beam 
where, for the sake of simplicity, the concrete 
cross section is completely cracked. Although 
in practical cases this situation is never met, at 
least before loading, it is worth observing that 
in laboratory tests sometimes a fully cracked 
three-point bending (TPB) beam is used [7]. 

The aim of the present paper is twofold. 
Firstly, to extend the result presented in 
Carpinteri et al. [4-6] for an arbitrary value of 
the relative flexural crack depth, whose value 
strongly affects the IC-debonding load. Then 

to couple this model with a detailed analysis of 
the central beam segment based on the 
cohesive [8] and overlapping [9] crack models. 
This analysis allows detecting the growth of 
the flexural crack and its interplay with the 
propagation of the IC-debonding crack. 
Furthermore, the overlapping crack model 
provides also the conditions for describing the 
occurrence of concrete crushing at the beam 
extrados. The competition and interplay 
between the different failure modes, as well as 
the effect of the relevant parameters on the 
structural behavior, are finally analyzed in 
terms of load-displacement curve. 

2 ANALYTICAL MODEL FOR IC- AND 
PE-DEBONDING 

Let us refer to a beam with a rectangular 
cross section (Fig. 1), in a TPB configuration. 
The beam span is 2l and P is the concentrated 
load. If z is the axial coordinate with origin at 
the beam mid-span, in the left side of the beam 
the bending moment is M = –P(l–z)/2. 

In the following, the quantities with 
subscript b refer to the beam to be 
strengthened and the quantities with subscript 
r to the reinforcement. Thus Eb, hb, tb and Er, 
hr, tr are the Young modulus, height (or 
thickness) and width of the beam and of the 
reinforcement, respectively. As outlined in the 
introduction, we want to develop a model able 
to analyze the competition between the 
flexural crack in the concrete beam and the 
interfacial cracks between FRP and concrete, 
either from the mid-span or from the supports. 
To this aim we firstly consider a given 
geometry, i.e. we fix all the crack depths: a is 
the flexural crack length while zi and zr are the 
interfacial crack tips positions (Fig. 1). 

 
Figure 1: FRP reinforced beam with a rectangular 
cross section under TPB load. The grey arrows 

indicate the crack growth directions. 
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We introduce the following dimensionless 
parameters: the relative crack depth α, the 
shear slenderness λ, the mechanical percentage 
of the reinforcement ρ, the dimensionless 
longitudinal coordinate ζi<ζ<ζr. In formulae: 

b
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h

α = , 
b

l
h

λ = ,  

r r r

b b b

E h t
E h t
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Two are the basic assumptions of the 
subsequent structural analysis. The first is that 
we assume planar cross sections inside the 
beam to be strengthened. The second is that 
the interface between the beam and the 
reinforcement is modeled as a weak interface, 
i.e. a bed of linear elastic springs. This is a 
common assumption in composite material 
modeling in general and in structural 
retrofitting in particular. More in details, for 
the geometry under consideration, peeling 
stresses are usually negligible. Hence the 
interface is modeled as a bed of horizontal 
springs of stiffness k, i.e. τ = k δ, where τ and 
δ are the shear stress and the relative 
longitudinal displacement across the interface. 

The stress-strain field in the unreinforced 
cross section (zr<z<l) and in the debonded 
region (0<z<zi) can be obtained by the simple 
beam theory. On the other hand, a more 
accurate analysis is needed in the reinforced 
portion (zi<z<zr), where the following three 
equilibrium equations hold: 

b
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where σb and σr are the normal stresses in 
the beam and the reinforcement, respectively. 
The first two equations state the equivalence 
of the stress distribution with the axial force 
(which is equal to zero) and with the bending 
moment M, whereas the third one represents 
the differential equilibrium of the 
reinforcement along z. Note that, because of 
thinness of the FRP plate, we considered the 
reinforcement as concentrated on the x-axis. 

Coupling the equilibrium equations (2) with 
the assumption of planar cross sections, it is 
possible to obtain a unique differential 
equation in the relative longitudinal 
displacement across the interface, δ [5]: 

( )2
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the relative displacement being related to 
the strain εr in the FRP by the following 
relationship: 
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In order to find the solution to the 
differential equation (3), we have to impose 
the proper boundary conditions. At the FRP e-
dge, the stress must vanish and, consequently, 
εr  = 0. From Eq. (4), it follows: 

( )
r
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The stress at the other edge (z = zi) of the 
bonded region can be evaluated approximately 
by assuming planar cross section in the 
cracked region at the beam mid-span. Classical 
beam theory and some analytical 
manipulations allow to compute the force 
FFRP in the FRP in the 0<z<zi interval as: 

( )FRP
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By means of Eqs. (4) and (6), the second 
boundary condition reads: 

( )
i

i2
b b b

d 3 ,
d z z

Pl f
z E t h
δ

α,ρ
=

= ζ  
(8)

with: 

( ) ( ) ( )i i
1 4, 1f
g

ρ
α,ρ

α,ρ
+

= − −ζ ζ  (9)

Equation (3) can now be solved, providing 
the relative displacement field δ and the 
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related shear stress field τ=kδ along the 
interface. The solution is plotted in Fig. 2. It is 
evident that at both the edges of the bonded 
zone a stress concentration, responsible of the 
delamination, appears. Since delamination is a 
remarkably brittle phenomenon, a failure 
criterion based on LEFM can be exploited to 
address the problem. To this aim, we need to 
evaluate the strain energy release rate, which, 
in the case of a weak interface, is directly 
related to the shear stress τmax at the crack tip 
by the relationship [5]: 

2
max

2k
=
τ

G  
(10)

 
Figure 2: Shear stress concentrations at the edges of 

the bonded region. 

According to LEFM, edge debonding will 
occur when the strain energy release rate 
reaches the interfacial fracture energy GiF. In 
the case of IC-debonding, τmax is given by τ(ζi) 
and, correspondingly, the force in the FRP is 
equal to: 
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where: 
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and β is a dimensionless parameter: 
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In a similar way, it is possible to derive the 
load causing PE debonding, which will occur 
when τmax is given by τ (ζr).  

Eq. (11) represents the critical condition for 
the growing of the delamination crack. We 
need now to determine the load causing the 
growth of the flexural crack. To accomplish 
this task, in the next section we will couple the 
present analytical model with a cohesive crack 
model (CCM) [8] description of the flexural 
crack occurring at the mid-span. The choice of 
using, for the flexural crack, the CCM instead 
of a LEFM framework is due to the following 
observations: fracture inside the concrete is 
typically quasi-brittle and CCM is able to 
detect crack initiation. Furthermore, the CCM 
has been recently extended to describe also 
concrete crushing failures [10], so that a 
further failure mode can be caught by the 
present analysis. 

In order to decide which crack will 
propagate at a given step of the loading 
process, the CCM needs not only the critical 
load (11) but also the relationship between the 
crack mouth opening and the force in the 
reinforcement, which will enter the algorithm 
as a constitutive law. The crack mouth opening 
is equal to twice the relative displacement δ(0) 
evaluated at the mid-span. Within the 
assumption previously provided, the desired 
relation is given by: 
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where for the sake of simplicity we neglect 
the interface compliance, since its contribution 
is negligible with respect to the other terms. 
The relative displacement δ(0) is thus given by 
the different elongation of the reinforcement 
with respect to the beam intrados. 

Similarly, the mid-span deflection v(0) can 
be evaluated as: 

P 

τ 

stress concentration 
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where the three terms in curly brackets 
represent the contributions of the unreinforced 
portion, of the reinforced-bonded region and 
of the reinforced-debonded part of the beam, 
respectively. The term ϕ(0)xl represents the 
contribution of the localized rotation at the 
beam mid-span due to the presence of the 
flexural crack. Within the present analysis, it is 
equal to δ(0)xλ. However, it is easily argued 
that its actual value is largely underestimated 
by the present analysis, since it completely 
disregards the process zone occurring at the tip 
of the flexural crack. Therefore, we will 
evaluate such a contribution by means of a 
cohesive crack model description of the central 
portion of the beam, as explained in the next 
section. 

3 NUMERICAL FORMULATION FOR 
THE INTERACTION BETWEEN 
DEBONDING AND FLEXURAL CRACK 

The numerical algorithm proposed by 
Carpinteri et al. [10] for the analysis of 
reinforced concrete beams in bending is herein 
extended to concrete beams strengthened by 
means of FRP strips. In particular, the 
evaluation of the load carrying capacity is 
performed by analyzing only the central 
portion of the beam, having a span to depth 
ratio equal to unity. Such an element, shown in 
Fig. 3a, is subjected to a constant bending 
moment, M, function of the applied force on 
the basis of the structural and the loading 
systems. The main mechanical nonlinearities 
are taken into account, namely, the tensile 
crack propagation, the concrete crushing in 
compression, and the FRP debonding, on the 
basis of the analysis presented in the previous 
section. 

The flexural crack propagation is modeled 
by means of the well established CCM [8]. A 

simple linear softening function is herein 
considered, although bi-linear or even more 
complicated relationships may be assumed 
depending on the characteristics of the 
considered material and the analyzed problem. 
The critical value of the crack opening 
displacement, beyond which the cohesive 
stresses vanish, and the fracture energy, GF, 
are assumed as material properties. 

As far as modeling of concrete crushing 
failure is concerned, the overlapping crack 
model (OCM) [9] is adopted. According to 
such an approach, that is the analogous of the 
CCM for compression, the inelastic and 
localized deformation in the post-peak regime 
is described by a fictitious interpenetration of 
the material, while the remaining part of the 
specimen undergoes an elastic unloading. As a 
result, a stress-displacement (overlapping) 
relationship describes how the stress in the 
damaged material decreases from its 
maximum value as the fictitious 
interpenetration increases. The crushing 
energy, GC, which is a dissipated surface 
energy, is defined as the area below the 
softening curve. It is assumed as a material 
property, since it is only slightly affected by 
the structural size, as shown in [9], where an 
extended validation of the OCM for concrete-
like materials has been proposed in the case of 
specimens with different slendernesses and/or 
sizes. 

The numerical algorithm is based on a 
discrete form of the elastic equations 
governing the mechanical response of the 
system. The concrete member is considered as 
constituted by two symmetrical sub-elements 
characterized by an elastic behavior, connected 
by means of (n) pairs of nodes (Fig. 3a). In this 
approach, all the mechanical nonlinearities are 
localized in the mid-span cross section, where 
cohesive and overlapping stresses are replaced 
by equivalent nodal forces, Fi, by integrating 
the corresponding stresses over the nodal 
spacing. The FRP bridging contribution is 
modeled by means of an external force, FFRP, 
applied on the crack mouth (at the level of the 
first node). The depths of the adhesive layer 
and of the FRP strip are assumed as negligible, 
compared to the beam height, hb. With 
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reference to Fig. 3a, the horizontal forces, Fi, 
acting at the i-th node along the mid-span 
cross-section can be computed as follows: 

{ } { } { }w MF K w K M= +⎡ ⎤⎣ ⎦  (16)

where: {F} is the vector of nodal forces, 
[Kw] is the matrix of the coefficients of 
influence for the nodal displacements, {w} is 
the vector of nodal displacements, {KM} is the 
vector of the coefficients of influence for the 
applied moment M. 

 
(a) 

 
(b) 

Figure 3: Finite element nodes (a) and force 
distribution (b) along the symmetry cross‐section. 

Equation (16) constitutes a linear algebraic 
system of (n) equations and (2n+1) unknowns,  
{F}, {w} and M. With reference to the generic 
situation reported in Fig. 3b, (n) additional 
equations can be introduced by considering the 
constitutive laws for concrete in tension and 
compression and for the FRP strip (Eq. (14)). 
It is worth noting that the reaction in the FRP 
strip is a function of the bond length and the 
flexural crack depth in addition to the crack 
opening, making possible to accurately 
evaluate the competition between the different 
failure modes. At each step, in fact, the load 
carrying capacity is determined by one of the 

four possible critical conditions: flexural crack 
propagation, crushing zone advancement, IC 
debonding, and PE debonding. The condition 
to which corresponds the minimum value for 
the applied load is that assumed as the critical 
one for the considered step of calculation. 
Therefore, the driving parameters are the 
cracking and crushing extensions as well as 
the debonding lengths, that are updated step-
by-step. In particular, the cohesive and 
crushing crack tips are moved to the next 
node, whereas the debonding lengths are 
increased by a prefixed quantity. Finally, at 
each step of calculation the localized rotation 
due to the presence of flexural cracking and 
crushing, ϕ(0) in Eq. (15), is obtained by 
subtracting the elastic contribution from the 
rotation of the beam portion. The latter one is 
computed by means of elastic coefficients of 
influence, that, along with those in Eq. (16), 
have to be computed a priori using a finite 
element analysis: 

( ) { } { }T
w MD w D Mϕ 0 = +  (17)

4 NUMERICAL RESULTS 

4.1 Competition between IC-debonding 
and flexural crack propagation 

The behavior of FRP-strengthened beams 
subjected to TPB test is herein analyzed by 
means of the new proposed algorithm. In the 
following, the relative crack depth, α, entering 
Eqs. (6)-(15) is given by the position of the 
fictitious crack tip, and therefore, it is 
equivalent to the sum of the real and the 
fictitious crack lengths. The width and the 
height of the beam are assumed equal to 100 
and 200 mm, respectively, for all the 
numerical simulations, as well as the FRP strip 
width is fixed to 100 mm. The FRP and 
concrete Young moduli are equal to 210,000 
MPa and 30,000 MPa, respectively. 

A comparison with the results of the former 
analytical model presented in [6], which 
assumes α=1 since the beginning of the 
loading process, is shown in Fig. 4 in terms of 
load vs. mid-span deflection, for ρ=0.070, 
GiF=0.065 N/mm, and σc=25 MPa. The new 
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proposed model (thick curve) permits to 
capture the decrease in the stiffness of the 
ascending branch due to the cohesive crack 
propagation. On the contrary, the analytical 
model (thin curve) neglects such a 
contribution. Both the models predict a load 
increase up to the onset of the IC-debonding, 
although the interaction between flexural crack 
and FRP debonding leads to a slight reduction 
in the maximum bearing load, Pmax. This 
interaction is also evident in the post-peak 
branch, where several local instabilities are 
obtained due to flexural crack propagations. In 
this case, the extension of the crushing zone is 
limited and it does not influence the overall 
response. Therefore, the area enclosed by the 
thick curve is equal to that of the thin curve 
(energy dissipated by the FRP debonding) plus 
that of the dashed curve (energy dissipated by 
the flexural crack), which refers to the 
unreinforced beam. 

 
Figure 4: Comparison between the former model 
(thin line) and the present model (thick line). The 
dashed curve refers to the unstrengthened beam. 

The effects of the reinforcement amount are 
analyzed in Fig. 5, where different mechanical 
percentages, ρ, are considered varying from 
zero up to 0.140. The increase in the FRP 
amount determines an increase in the stiffness 
of the ascending branch. Such a stiffening is 
more evident after the cracking load, i.e., when 
the real crack propagation occurs. The 
maximum load is an increasing function of the 
FRP amount, whereas the cracking load is 
almost constant. In particular, for ρ≤0.018 the 
phenomenon of hyper-strength is obtained. 
The post-peak behavior becomes more and 

more brittle by increasing the reinforcement 
percentage, with a considerable decrease in the 
anelastic displacement. All the cases shown in 
Fig. 5 are characterized by IC-debonding 
failure mechanism, with limited concrete 
crushing effect. 

 
Figure 5: Load vs. mid‐span deflection curves for 
different mechanical percentages of reinforcement. 

All the curves refer to IC‐debonding failure 
mechanism. 

 
According to the present model, the 

maximum load carrying capacity, Pmax, is 
function of the relative flexural crack length, 
α, that, in turn, depends on the FRP amount 
and the concrete compressive strength. The 
ratio between the maximum load predicted by 
the proposed model and that given by the 
previous analytical model, which assumes 
α=1, is shown in Fig. 6 as a function of the 
mechanical percentage of reinforcement. It 
results to be a decreasing function of the FRP 
amount, and, in particular, it is greater than 
unity for ρ<0.04. Such a trend can be 
explained by analyzing the variation of the 
FRP debonding strength as a function of the 
flexural crack length, α, shown in Fig. 7. The 
peak load of the curves in Fig. 5 corresponds 
to the onset of the FRP delamination, that, 
typically, takes place for α equal to 0.7 about. 
In the case of small amount of reinforcement, 
such as ρ=0.018, the delamination force is a 
monotonic decreasing function of the relative 
crack depth, and, therefore, the force referred 
to α=1.0 is lower than that referred to α=0.7. 
Furthermore, the cohesive stress distribution 
along the process zone has a significant 
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contribution on the load carrying capacity with 
respect to the case of completely cracked cross 
section. By increasing the reinforcement 
amount, the diagrams of the delamination 
force vs. relative crack depth presents a 
minimum for α around 0.7 (see the curve 
referred to ρ=0.140 in Fig. 7). In this case, the 
peak load given by the proposed model is 
lower than that relative to α=1.0. 

 
Figure 6: Effect of the flexural crack length, α, on the 

load carrying capacity. 

 
Figure 7: Effect of the flexural crack length, α, on the 

FRP strip reaction. 

4.2 Transition between different failure 
mechanisms 

The transition between the three different 
failure mechanisms analyzed by the proposed 
approach, namely PE-debonding, IC-
debonding and crushing, is governed by the 

mechanical and geometrical parameters of the 
beams. With reference to the beam considered 
in the previous section, a transition from IC-
debonding to crushing failure is obtained when 
the mechanical reinforcement percentage 
reaches the value 0.350, as shown in Fig. 8a. 
In this case, the crushing zone becomes wider 
and wider by approaching the maximum load, 
that, in any case, is determined by the onset of 
the IC-debonding. Moreover, at a certain point 
of the FRP delamination and the concrete 
crushing processes characterizing the post-
peak regime, the equilibrium along the mid-
span cross section is no longer verified. This 
phenomenon may be associate to a global 
collapse due to concrete crushing. 

 

 
Figure 8: Load vs. mid‐span deflection curves: 

transition from IC‐debonding to crushing failure by 
increasing the mechanical percentage of 

reinforcement (a); transition from crushing to PE‐
debonding failure by increasing the concrete 

compressive strength (b). 

(b) 

(a) 
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On the other hand, a transition from 
crushing to PE-debonding failure is obtained 
by increasing the concrete compressive 
strength from 25 MPa to 40 MPa, for a 
constant value of the reinforcement amount, 
ρ=0.350 (Fig. 8b). In this case, the peak load is 
determined by the onset of the PE-debonding. 
Compared to the case of crushing failure, the 
overall stiffness is constant up to the peak load 
(expect for the initial tension-stiffening effect), 
due to a limited damage of the concrete in 
compression. Finally, it is worth noting that, 
even if the curves shown in Fig. 8 have been 
obtained by assuming very high reinforcement 
amounts, maybe far from reality, similar 
behaviors can be obtained, in a realistic way, 
by increasing the fracture energy of the 
interface. 

The complex competition between the three 
different failure mechanisms has been studied 
by means of a parametric analysis, and 
summarized in the interaction diagrams shown 
in Figs. 9-12. The investigated parameters are: 
mechanical percentage of reinforcement ρ, 
relative reinforcement length ζr, beam 
slenderness λ, concrete compressive strength 
σc, and fracture energy of the interface GiF. All 
the other parameters –beam width and height, 
elastic moduli of concrete and FRP– are kept 
constant, equal to those assumed in the 
previous section. The diagram in Fig. 9 refers 
to λ=6, σc=30 MPa, and GiF=0.08 N/mm. It is 
clear that IC-debonding failure is the most 
frequent for real cases, characterized by small 
reinforcement amounts and relative bonding 
lengths around 0.8. PE-debonding failure takes 
place in the case of small reinforcement 
lengths and/or high reinforcement percentages, 
whereas crushing failure occurs for high 
reinforcement lengths (ζr>0.65) and 
percentages (ρ>0.30). In the case of small 
reinforcement amount, there is a region where 
the failure mechanism is due to both IC and 
PE delaminations. In such cases, the maximum 
load is determined by the onset of IC-
debonding, whereas PE-debonding prevails 
when the residual bond length decreases below 
a certain value. The effect of the beam 
slenderness on the transition between the 

failure mechanisms can be evidenced by 
comparing the diagram in Fig. 9 with those in 
Fig. 10. In particular, a decrease in the 
slenderness from 6 to 3 (Fig. 10a) leads to an 
enlargement of the region characterized by a 
strong competition between IC- and PE-
debonding and a shrinkage of the region of 
crushing failure. An opposite behavior is 
obtained by increasing the slenderness from 6 
to 12 (Fig. 10b). 

 
Figure 9: Failure mechanism as a function of 

geometrical and mechanical parameters for λ=6. 
σc=30 MPa, and GiF=0.08 N/mm.  

 

 
Figure 10: Failure mechanism as a function of 

geometrical and mechanical parameters for σc=30 
MPa, GiF=0.08 N/mm and λ=3 (a); and λ=12 (b). 

(b) 

(a) 



M. Corrado, P. Cornetti and A. Carpinteri 

 10

As regards the crushing failure, it mainly 
depends on the considered concrete grade, as 
shown in Fig. 11. A decrease in the concrete 
compressive strength from 30 to 20 MPa 
determines an enlargement of crushing failure, 
with the appearance of an interplay between 
IC-debonding and concrete crushing for an 
intermediate range of reinforcement amounts. 
Analogously, the crushing failure is also 
favoured by the increase in the interface 
fracture energy, as shown in Fig.12. 

 
Figure 11: Failure mechanism as a function of 
geometrical and mechanical parameters for λ=6, 

σc=20 MPa, and GiF=0.08 N/mm. 

 
Figure 12: Failure mechanism as a function of 

geometrical and mechanical parameters for λ=6, σc=30 
MPa, and GiF=0.12 N/mm. 

5 CONCLUSIONS 
A coupled analytical/numerical model has 

been proposed to analyze the interaction 
between different failure mechanisms 
characterizing the behavior of FRP-
strengthened concrete beams. The main 

novelty is due to the fact that the actual 
flexural crack propagation and the damage of 
concrete in compression occurring along the 
mid-span cross section during the loading 
process, as well as their interaction with the 
FRP delamination modes are taken into 
account. In particular, both the nonlinear 
processes characterizing the behavior of 
concrete in tension and compression are 
modeled by means of a cohesive zone model. 
A step-by-step solution updating the cracking 
and crushing extensions and the debonding 
lengths, permits all the local instabilities, such 
as snap-back branches, to be captured without 
any loss of the loading control. 

The tension-stiffening characterizing the 
increasing branch of the load vs. displacement 
curves is correctly described by means of the 
cohesive crack model. As regards the 
interaction between different failure 
mechanisms, the flexural collapse has a 
significant effect on the peak load 
corresponding to IC-delamination failure, 
whereas has a limited effect on the PE-
debonding failure mode. 

The proposed parametric analysis has 
evidenced that IC-debonding failure 
mechanism is the most frequent for real cases, 
usually characterized by high relative 
reinforcement lengths and low reinforcement 
amount, whereas crushing failure prevails in 
the case of low concrete compressive strength, 
high interface fracture energy, high 
reinforcement amount and high relative 
reinforcement length. PE-debonding failure 
mechanism occurs for low relative 
reinforcement length and low beam 
slenderness. 

Future developments will regard the 
extension of the model to concrete beams 
reinforced by steel bars and strengthened by 
FRP strips. Such cases, in fact, are the most 
interesting for practical applications, as well as 
the most studied from an experimental point of 
view. 
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