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Abstract. This paper presents a simple model aiming at simulating the drying shrinkage vs. mass-loss
evolution of a concrete sample. It is based on a two-stage drying process. In a first stage, an external
layer dries, as the central part of the sample has a fixed moisture. In a second stage, the central part of
the sample dries. This simple model gives a reliable description of the drying process. The numerical
results are compared to experimental ones, and we show that the model is able to predict the size
effect of drying for standard concrete.

1 INTRODUCTION

Shrinkage of concrete results from different
phenomena such as the hydration of cement or
the self-dessication of the free water [1,2]. Con-
crete shrinkage has been widely studied as it
can lead to unwanted cracking. Different mod-
els have been proposed, with different levels of
complexity (see for example [3–6]). We pro-
pose in this paper a very simple model, based
on a two-stage process. During the first stage,
we assume that just a surrounding layer dries,
leading to a fast loss of moisture in a thin layer.
During the second stage, the center of the sam-
ple dries slowly to the equilibrium state that de-
pends on the external relative humidity. This
drying process is generally studied by record-
ing the mass loss and the shrinkage evolution
with respect to time. Modelling this evolution
requires the knowledge of the diffusion coeffi-
cient as well as the convection properties. We
limit our study to the evolution of the shrinkage
with respect to the mass loss. The problem is
considerably simplified as time is no more con-
sidered. Then, the proposed model just depends
on four parameters, (i) the total moisture loss,

(ii) the shrinkage coefficient, (iii) the thickness
of the drying layer and (iv) the associated re-
duction of stiffness. For this first version of the
model, we assume that the parameters are inde-
pendent of the hydration level. This is a strong
hypothesis but as we will see, it gives reliable
results on standard concrete. After a presen-
tation of the model and of the corresponding
equations, the model is evaluated on different
experimental results.

2 MODEL DESCRIPTION
The model is based on the observation that

a drying shrinkage vs. mass-loss evolution re-
veals two stages for a wide varieties of con-
cretes [7]:

• In a first part, a non linear evolution oc-
curs, with a small average slope (O-A in
figure 1);

• In a second part, a linear evolution with a
high slope occurs until the equilibrium of
the sample (A-B in figure 1).

Although different evolutions can be found for
non standard concretes, this evolution is ob-

1



A. Delaplace, H. Noyalet

served for standard cement pastes, mortars or
concretes.

O
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Mass loss

Shrinkage

Figure 1: Schematics of the mass-loss versus drying
shrinkage curve.

As this curve is not related to time, the ex-
plicit value of the diffusion coefficient and the
boundary conditions are not used in the anal-
ysis. The model has just to describe the loca-
tion of points O, A and B, and the evolution be-
tween these points. We propose next to explain
the model behaviour on a 2D single-face drying
sample.

2.1 First drying stage

In the initial state, the moisture of the sam-
ple is Cini (figure 2-a). Cend will be the final
one, and ∆C = Cini−Cend is the total variation
of moisture content during the drying process.

During the first stage, we assume that the
moisture of the external face drops to the final
value Cend. The thickness of the drying layer
evolves from 0 to δ1 (figure 2-b), and the mois-
ture content is linear inside this layer. The cen-
ter of the sample remains at the initial moisture
content Cini. During this evolution, the leading
variable is the thickness δ of the layer, varying
from 0 to δ1. The final state of this first stage
(figure 2-c) corresponds to point A in figure 1.

(a)

(b)

(c)

Cend Cini

δ1

Figure 2: First drying stage: initial (a), intermediate (b)
and final (c) states.

2.2 Second drying stage
During the second stage, the thickness of

the external layer remains constant. The cen-
tral part of the sample dries uniformly from Cini

to Cend moisture content (figure 3-d). The fi-
nal state (figure 3-e) is a uniform moisture con-
tent Cend. During this second stage, the leading
variable is the moisture content C of the central
part.

(c)

(d)

(e)

Cend Cini

Figure 3: Second drying stage: initial (c), intermediate
(d) and final (e) states.

2.3 Model parameters
The model depends on 4 parameters:

• ∆C, the variation of moisture,

• δ1, the final thickness of the drying layer,

• κ, the shrinkage coefficient linking the
variation of strain ∆εsh with the moisture
variation ∆εsh = κ∆C
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• D, the coefficient that affects the stiffness
in the drying layer. For our point of view,
the origin of this reduction can be a crack-
ing of the external surface [8, 9] or a skin
effect (less aggregate in the drying layer).

3 APPLICATION ON A 6-FACE DRYING
PRISMATIC SAMPLE

We propose in this section to establish the
equations linking the drying shrinkage to the
mass-loss. The following analysis can be ex-
tended to other geometries or other drying con-
ditions.

A 6-face drying of a prismatic sample is con-
sidered. The length of the sample is `, the cross
section is a p × w rectangle. The total vol-
ume of the sample is Vtot = ` × p × w. The
volume of the central part is Vc(δ) = (` −
2δ)× (p− 2δ)× (w− 2δ) where δ is the thick-
ness of the drying layer. The volume of the
drying layer is Ve(δ) = Vtot − Vc(δ). In the
same manner, the total area of a middle cross
section is Stot = p × w, the central area is
Sc(δ) = (p − 2δ) × (w − 2δ) and the area of
the drying layer is Se(δ) = Stot − Sc(δ).

3.1 Mass-loss evolution
Stage 1

During this stage, the normalized mass-loss
is simply:

µ1(δ) =
Ve(δ)(Cini − Cend)/2

M0

(1)

for 0 ≤ δ ≤ δ1. M0 is the initial mass of the
sample.

Stage 2
During the second stage, the mass-loss

reads:

µ2(C) = [Ve(δ1)(Cini − (Cend + C)/2)

+Vc(δ1)(Cini − C)] /M0 (2)

for Cend ≤ C ≤ Cini. Note that for C = Cend,
we find the obvious relation for the total mass-
loss µend = Vtot(Cini − Cend)/M0.

3.2 Shrinkage evolution
The shrinkage is evaluated considering a uni-

form distribution of the strain ε in the cross sec-
tion, following the Euler-Bernoulli hypothesis
(figure 4).

`

h

εσ

δ

Figure 4: Stress and strain distribution in a central cross
section.

Stage 1
The stress-strain relation reads:

σ = E(1 −D)εe (3)

where E is the Young modulus of the central
part,D is a variable that affects the Young mod-
ulus (typically due to cracking) and εe is the
elastic strain expressed as:

εe = ε− εsh (4)

where ∆εsh = κ∆C is the strain due to drying
shrinkage and κ the shrinkage coefficient. For
this study, the autogeneous, thermal and creep
strains are neglected.

The force equilibrium in a central cross sec-
tion is:

Sc(δ)σc + Se(δ)σe = 0

with:
σc = Eε

σe = E(1 −D) (ε− κ∆C/2)

It leads to the following expression for the strain
in the central part:

εc1(δ) =
(1 −D)Se(δ)κ∆C/2

(1 −D)Se + Sc

Additionnaly, one has to consider the uniform
shrinkage of the left and right extremities:

εext1 = κ∆C/2

and the total strain is:

ε1(δ) =
(`− 2δ)εc1(δ) + 2δεext1

`
(5)
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Stage 2
The shrinkage of the extremities is:

εext2 = κ∆C/2

The shrinkage of the central part is:

εc2(C) = [(1 −D)Seκ(Cini − (Cend + C)/2)

+Scκ(C − Cini)] /((1 −D)Se + Sc)

and finally:

ε2(C) =
(`− 2δ1)εc2(C) + 2δ1εext2

`
(6)

3.3 Parameters effect
The maximum abscissa of the global model

response depends directly on the variation of
moisture ∆C, as the maximum ordinate de-
pends on the shrinkage coefficient κ. Figures 5
and 6 show the effects of δ1 and of D on the
global model response.

Figure 5: Effect of the surrounded drying layer thickness
δ1 (∆C = 80, κ = 8.× 10−6, D = 0.80).

Figure 6: Effect of the stiffness reductionD of the drying
layer (∆C = 80, κ = 8.× 10−6, δ1 = 6.× 10−3).

4 Experimental results
We propose in this part to apply this model

on real experimental results. First, we explain
the model parameters fitting for three different
materials. Then, we analyse the ability of the
model to predict the right behaviour with dif-
ferent boundary conditions.

4.1 Parameters fitting
The strategy to identify the parameters of the

model is split in four parts:

1. Knowing the initial mass M0 of the sam-
ple and the normalized final mass loss
µend, the variation of moisture is:

∆C =
M0µend

Vtot
(7)

where Vtot is the volume of the sample.

2. Knowing the final shrinkage ∆ε, the
shrinkage coefficient reads:

κ =
∆ε

∆C
(8)

3. The thickness δ1 of the external drying
layer is obtained by fitting the abscissa of
point A (figure 1).

4. Finally, the reduction of stiffness of the
cracking layer is obtained by fitting the
ordinate of point A.

4.1.1 Application to three concretes

This parameters identification has been ap-
plied on three different concretes with variable
behaviours:

• a C25 concrete (C1)

• a lightweight concrete (C2)

• a concrete with a high W/C ratio (C3)
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Figure 7 shows the experimental results and the
best fitted curve for each concrete. One can see
that a set of parameters can easily be identified
from experimental results.

Figure 7: Identification of the model for three different
concretes

Table 1 gives the corresponding values.

Table 1: Parameters values for the three concretes

∆C κ(×10−6) D δ1
[kg/m3] [m3/kg] [-] [mm]

C1 77. 6.9 0.95 8.0
C2 55. 15. 0.98 7.5
C3 212. 4.8 0.82 8.5

One can see that whatever the material, the
order of magnitude of δ1 is closed to 8 mm, and
D is closed to 1.

4.1.2 Size effect prediction

The model is pertinent if it has some pre-
diction capabilities. We propose to assess this
point on a set of prismatic samples. Different
studies have shown the size effect on drying re-
sults [10, 11].

In our study, three sizes are used: 4 × 4 ×
16 cm, 7×7×28 cm, 10×10×40 cm samples.
For all samples, a micro concrete is used. An
additional size has been tested, a 2× 2× 16 cm
sample, but with mortar instead of the micro
concrete. Although this is not the same mate-
rial, we have included this sample in our com-
parison as the model doesn’t take into account

the microstructure of the material. For each
size, two samples have been tested (filled and
unfilled markers on figure 8).

The model parameters are identified on the
4 × 4 × 16 cm sample. The values are: ∆C =
85 kg/m3, κ = 6.8×10−6 m3/kg, D = 0.88 and
δ1 = 5.3 mm. Figure 8 shows the experimental
curves and the model prediction behaviour.

Figure 8: Prediction of the scale effect. Parameters are
identified on the 4 × 4 × 16 cm sample.

One can see that the model is able to predict
in a reliable manner the evolution of shrinkage
vs. mass loss for different sample sizes. These
first results are encouraging and should be con-
firmed on different concrete formulations.

A second experimental campaign, with the
same sample size but with different drying
boundary conditions, is under progress and re-
sults will be presented during the conference.

5 CONCLUSIONS
A simple drying model is presented, aiming

at representing the evolution of the shrinkage
vs. mass loss evolution. As we want a simple
model, some hypothesis have been done for the
drying process:

• The drying process is assumed to be a
two-stage process. In the first one, just
a surrounding layer dries uniformly from
the initial to the final water content value.
In the second one, the center part of the
sample dries uniformly.

• Four parameters control the drying pro-
cess: the variation of water content, the
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thickness of the surrounding layer, the
shrinkage coefficient, the stiffness reduc-
tion in the surrounded layer.

We show that the model is able to reproduce the
evolution of the shrinkage with respect to the
mass loss for different types of concrete. More
interestingly, the model is able to predict the
size effect for a standard concrete. In this ver-
sion, the model is not able to reproduce the ef-
fect of different hydration degree. It is one of
the evolution we can consider for further devel-
opments.
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