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Abstract. Complexity is a concept widely applied in many fields of science and humanities. Although
the word is extensively used in construction engineering, no definition and measure has been already
given. As a practical rule, a structure subjected to loads is considered simple if load paths are easily
identifiable. On the contrary, complex schemes are those in which the structural behavior is difficult
to catch.

The previous generalized concepts are inserted in a more precise framework. Using information
theory, a definition of structural complexity is given. A simple example is made in order to describe
the new measure. Some issues of the approach are presented and discussed. The references to alge-
braic graph theory, required for reducing the computational effort, are briefly presented.

Then, the complexity measure is applied for evaluating the “damage tolerance” of a frame, i.e.
its robustness. This concept, as introduced by Lind, can be defined as the capacity of the system to
sustain local damage without failure. Robustness is a prerequisite in the design of a structure and
represents a modern research topic in the field of structural engineering.

1 INTRODUCTION
In structural engineering, the word “com-

plex” is often employed to define something
that is difficult to understand or to solve. There
are many ideas that surround the concept of
complexity: the size, the presence of elements
with different functions, or the difficulties in
modeling and calculus. In general, a complex
structure is the one that cannot be reduced to
a simple scheme without missing important as-
pects of its structural behavior.

The concepts linked to complexity are ex-
tensively used in many disciplines, e.g. bi-
ology, game theory, communication, computer
science, etc. Lloyd [1] found more than 30
different definitions, which can be substantially
grouped into two categories. On one side, there
are the measures that capture the randomness,

the information content or the description of a
process, e.g. periodical systems are less com-
plex than random ones. On the other side, com-
plexity depends upon the size of the process:
the larger the system the greater the complexity.
Both categories interfere in structural engineer-
ing.

2 STRUCTURAL COMPLEXITY

Although the concept of structural complex-
ity is extensively employed in civil engineering
practice, a proper definition has not been formu-
lated yet. Extending the general definition given
by Simon [2] a complex structure can be defined
as the one made up by a large number of parts
that interact in a non-simple way. The whole
system is not simply the mere sum of the single
resisting mechanisms, it takes into account the
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interaction that the different mechanisms have
with one another [3].

In another way, let us imagine to create a du-
plicate of the structure to define the complexity.
Rather than creating a perfect copy of the origi-
nal, we suppose to formulate a scheme which
(1) is able to behave similarly to the original
structure under the same set of external loads,
and (2) has the minimum possible number of el-
ements. The simpler the structure, the lower the
number of elements in the copy. As limit case,
the simplest structure is the one that can be con-
densed into a single element. On the contrary, if
the duplicate has the same number of elements
which absolve to the same functions, the struc-
ture is considered complex.

Therefore, for a given set of external forces
acting on a scheme, the complexity of a system
can be calculated by considering the amount
of information carried in it, i.e. the possibil-
ity of reducing the size of the scheme without
changing the overall behavior. The approach
is based on the concept of entropy introduced
by Shannon [4] that captures the amount of in-
formation within a sequence. It can also be
found in other approaches to complexity [5, 6].
In statistical mechanics, entropy is essentially
a measure of the number of ways in which a
system may be arranged, often taken to be a
measure of disorder: the higher the entropy,
the higher the disorder. The entropy is propor-
tional to the logarithm of the number of possi-
ble microscopic configurations of the individ-
ual atoms and molecules of the system (micro-
states), which could give rise to the observed
macroscopic state (macro-state) of the system,
e.g. through Boltzmann’s constant of propor-
tionality.

2.1 Information theory
In information theory, the entropy is the

amount of information required to describe the
state of the system. Shannon [4], in a general
theory of communication, introduced a metric
for measuring the entropy. Supposing to have
a set of possible n outcomes to which a set
of probabilities (p1, p2, ..., pn) is assigned, i.e.

∑n
i=1 pi = 1, a measure of how much uncertain

is the choice (or how much chance is involved
in the event) can be expressed as

H = −K
n∑

i=1

pi log pi, (1)

where K is a positive constant that depends
upon the unit of measure, as well as the base
of the logarithm. This quantity H is called
information-entropy and is the only function
that satisfies the following axioms:

1. H = 0 if and only if all the pi are zero, ex-
cept one having unit value. The entropy
is null if the outcome is certain.

2. If all pi are equal, i.e. pi = 1
n

, then H is
a monotonically increasing function of n.
This means that with equally likely events
there is more choice, or uncertainty, when
there are more possible events.

3. For a given number of outcomes n, H
achieves its maximum, log n (forK = 1),
when all the events have equal probability
to occur:

p1 = p2 = .... = pn =
1

n
.

This situation corresponds to the maxi-
mum uncertainty.

In graph theory, this concept has been ex-
tended by substituting the outcomes with the
decompositions that can be made on the graph,
and the probabilities with the ratios between a
functional assigned to each decomposition, fi,
and the sum of all the functionals extended to
all the possible decompositions, i.e.

Hf = −
∑
i

fi∑
j fj

log

(
fi∑
j fj

)
. (2)

As an example, consider the two schemes
of Figure 1. Both structures support horizontal
forces. The difference between the two is the
size of the central column and, therefore, the
relative stiffness between the elements. Easily,
one recognizes in structure (b) the path of loads
from the elevation to the foundation, i.e. struc-
ture (b) is simpler than structure (a).
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(a) (b)

Figure 1: Two similarly connected and loaded structures. The one on the left-hand side (a) is composed by elements that
have comparable stiffness, while the other (b) is composed by certain elements with higher stiffness [8].

2.2 Decomposition of the structure
In order to follow the same procedure

adopted in graph theory and previously il-
lustrated, the original statically indeterminate
structure is decomposed. To explain the idea at
the base of decomposition, consider the struc-
ture as set of edges, the beams, and vertices,
the nodes of the structure. To each edge, some
properties are assigned. In this manner, the
structure is turned into a graph; the nodes, or the
vertices, belong to one of the following classes:

• loaded nodes: the nodes of the structure,
on which an external set of forces acts;

• foundation nodes: the nodes which have
restrictions in displacement;

• connection nodes: the nodes which con-
nect the elements, with no loads directly
acting on them.

The foundation node has to be unique [7]: it
represents a unique point to which all the loads
are transferred.

The decomposition procedure consists in
identifying all the possible paths between the
loaded nodes and the unique foundation node.
The paths have not to create closed circuits. In
frames, the set of the decomposed structures,
called fundamental structures, is the set of the
rooted trees which contains all the loaded nodes
[8, 9]. This is possible if the loads act only on
nodes (not distributed on the elements), and if
no internal hinges are present.

2.3 Choice of the functional
Many authors dealt with the choice of a

proper descriptor of the structure. For exam-
ple, Biondini [10] used the properties of stiff-
ness matrix as an indicator of the performance
of the structure. Unfortunately, the stiffness ma-
trix contains quantities with different physical
meaning and different physical units. More-
over, the stiffness matrix contains information
on the connections between the elements, but
it does not take into account the direction and
the magnitude of loads on the structure. Kine-
matical quantities may synthesize both the stiff-
ness properties and the external action. Anyway
they suffer the same problem of the components
of stiffness matrix since the physical meaning is
different for displacements and rotations. At the
same time, it is necessary to identify a quantity
which summarizes the behavior of all nodes and
elements.

It has been found that the work of internal
deformation can represent an efficient param-
eter able to represent both the distribution of
stiffnesses across the structure and the inten-
sity and direction of the external loads. More-
over, internal deformation work can be com-
puted easily by means of Clapeyron’s Theorem,
if linear elasticity is supposed as material prop-
erty.

2.4 The Index of Structural Complexity
The Authors already demonstrated that the

internal deformation work in each fundamen-
tal structure is greater or equal to the deforma-
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tion work in the original statically indeterminate
structure [8]. In other words,

ψi =
Win

WS,i
≤ 1 (3)

where Win is the deformation work in the orig-
inal statically indeterminate structure and WS,i
is the deformation work in the i-th fundamental
structure. This ratio can be used to compute the
performance of each fundamental structure, or
possible load path. Depending on the value of
ψi, the performance of the fundamental struc-
ture is compared with the one of the original
structure. In other words it is possible to asses
if the removed internal restrains do not give a
significant contribution to the overall behavior.

The ratio has been called performance ratio,
to highlight its capacity to identify predominant
load paths. In summary:

• ψi ≈ 1 the fundamental and the orig-
inal structures have similar deformation
works, i.e. the load path is representative
of the behavior of the original structure;

• ψi ≈ 0 the deformation work in the fun-
damental structure is larger than the cor-
responding in the original structure. The
load path is not representative of the orig-
inal structure;

• intermediate values are possible.

Since the ψi-values give an information
about the way the loads are transferred from
the elevation to the foundation, it can be used
as the functional fi of eqn. (2). The study of
the entropy of the distribution of the values of
the ratio gives a measure of the complexity of
the structure. Applying eqn. (2), the Structural
Complexity Index is defined as

SCI = −
s∑

i=1

ψi∑s
j=1 ψj

log2

(
ψi∑s
j=1 ψj

)
,

(4)
where s is the number of fundamental struc-
tures, or load paths. In order to compare differ-
ent structures with different number of funda-
mental structures. This can be done by dividing

eqn. (4) by the maximum value of complexity
for a structure with s load paths, i.e. when all
the load paths have performance ratio equal to
1/s, as stated in the introduction. The Normal-
ized Structural Complexity Index is, thus,

NSCI =
SCI

− log (1/s)
=

SCI

log (s)
. (5)

Values of the NSCI close to one indicate that
the scheme is complex, on the contrary values
near to zero imply that the scheme is simple.

3 EXAMPLE
In this section, an example of the metric de-

scribed above is presented. Consider the frame
structure sketched in Figure 2. It is composed
of 10 nodes –9 nodes in elevation, one founda-
tion node– named with capital letters A,. . . , J,
and 15 beams. Beam dimensions are 30 × 60
cm, column dimensions are 40 × 40 cm. The
frame is made of concrete (with Young’s mod-
ulus equal to 25 GPa). Linear elasticity is sup-
posed for material behavior.

Figure 2: Sketch of the frame. The measures are in me-
ters. The foundation node is considered unique, as re-
ported in the text.
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As a first example, the following nodal
forces are applied on all elevation nodes (i.e.
A,. . . , I)

V = 100 kN
H = 100 kN. (6)

First, the frame is converted into a graph and, by
means of algebraic graph procedures, the funda-
mental structures are defined, see the Appendix
for details on the procedure. The number s of
fundamental structures is 1183 and the com-
plexity parameters are computed with eqns. (4)
and (5).

SCI = 9.5849

NSCI = 0.9389. (7)

The previous results illustrate that, in the do-
main of the information related to load paths,
the loaded structure is complex. The perfor-
mance ratios, computed with eqn. (3), indicate
the load paths in the structure and its efficiency.
The highest value of the performance ratio is
0.2064 and relates to the fundamental structure
depicted in left-hand side of Figure 3.

Figure 3: Fundamental structures for H/V = 1.00, on
left-hand side, and H/V = 0.50, on right hand side. The
fundamental structures are represented by thick lines.

We perform now a parametric analysis con-
trolling the ratio between the horizontal and the
vertical forces acting on the structure. In par-
ticular we fix the vertical force on each node
in 100 kN, and we reduce the magnitude of the
horizontal force from 100 kN to zero.

For example, we suppose a ratio H/V =
0.50, that means that H = 50 kN. In this case,
the values of the complexity parameters reduce,
showing that the structural behavior is turning
into a simpler one. In particular, we get

SCI = 9.3588

NSCI = 0.9168. (8)

As stated before, the analysis of the perfor-
mance ratios gives an idea on how the loads are
transmitted to the foundation. In this case, dif-
ferently from before, the fundamental structure
which exhibits the highest value of ψ (0.1716)
is illustrated in the right-hand side of Figure 3.
The main differences refer to the upper-left part
in which the contribution of the columns be-
comes more relevant as much as the horizon-
tal force reduces, i.e. the resultant nodal force
tends to be vertical. As a limit situation, the
case H = 0 kN is considered. In this sense, the
NSCI is equal to 0.4527 and the fundamental
structure with higher performance index is the
one constituted by the loaded columns alone.
The associated ψ-value is, as expected, 0.9999.

Table 1: Number of fundamental structures with perfor-
mance ratio greater than a given percentage of the maxi-
mum value, ψmax. Values are cumulative.

H/V
ψ∗/ψmax 1.00 0.50 0.10 0.00

≥ 0.90 6 5 1 1
≥ 0.80 9 9 1 1
≥ 0.50 69 27 1 1
≥ 0.20 262 82 2 1
≥ 0.10 581 256 4 1

In order to study the contribution of differ-
ent fundamental structures, we ordered the ψ-
values obtained from the analysis of the 1183
statically determinate structures in ascending
order. To control easily if there are more
than one mechanisms with relevant ψ, we nor-
malized each order position by dividing it by
the number of fundamental structures. Plot-
ting these data on a graph like the one of Fig-
ure 4(a), it is possible to asses the percentage
of mechanisms with performance ratio smaller
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than a given value ψ∗. The loading cases con-
sidered refer to H/V values equal to 1.00, 0.50,
0.10 and 0.00. Referring to cases 1.00 and
0.50, there are many mechanisms with rela-
tively high performance indexes. In Figure 4(b)
the values of ψ∗ are normalized to the maxi-
mum value. There are six fundamental struc-
tures in the range 0.90 − 1.00ψmax in the case
H/V = 1.00, which reduces to five in the case
H/V = 0.50. There is only one in the cases
H/V = 0.10 and 0.00. These data are reported
in Table 1. The representativeness of a partic-
ular load path in the case of H/V = 0.00 is
clearly visible. This aspect makes the corre-
sponding NSCI low.
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Figure 4: Cumulative probability plots. Probabilities
of occurrence of mechanisms with performance ratio
smaller than ψ∗, i.e. P (ψi ≤ ψ∗). On plot (a), the values
of ψ∗ are absolute, on plot (b) the values are normalized
to the maximum ψ-value of each load case. The consid-
ered load cases are H/V = 1.00, 0.50, 0.10 and 0.00.

4 ROBUSTNESS
4.1 Basic concepts

Structural robustness plays a fundamental
role in the design of structures [11]. This
fact is confirmed by the requirements that de-
sign codes have given after serious accidents
in the past (for example Ronan Point Apart-
ment Building in 1968). For the EuroCodes,
the structures should be robust in the sense that
the consequences of structural failure should
not be disproportional to the effect causing the
failure [12]. Lind [13] introduced the concept
of damage tolerance and Masoero and others
[14] recently proposed the analogy of structural
robustness with material’s toughness, a well-
known concept of material science and fracture
mechanics.

In practice, structural robustness can be
achieved in different ways, such as alternating
the load paths or compartmentalizing the struc-
ture. As reported in the previous sections, frame
behavior exhibits a sort of redundancy that can
be intended as the capacity to redistribute the
loads and to vary the load paths.

Moreover, recent research trends show that
the events with the smallest occurrence proba-
bilities are the ones that have the worst effects
on the structure [15]. This is the case of so-
called “black-swan” events, i.e. events whose
existence was not known (or easily predicable)
before the fist occurrence. In this sense, it is
more convenient to approach the problem of
structural safety with the so called consequence
based design, as already done in other design
fields such as natural hazards, aerospace and
material engineering.

4.2 Complexity and Robustness
In order to analyze the implications of the

proposed complexity metric on structural ro-
bustness, we propose to remove column JH
from the frame sketched in Figure 2. This event
can be caused e.g. by an explosion or by a lo-
cal failure, e.g. during and earthquake. We
take the increment of deformation work after
the removal as a parameter which gives an idea
about the effects of the removal. The greater
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the ratio of deformation work after/before the
removal, the largest the effects on the structure.
The deformation work is computed by means of
Clapeyron’s Theorem. The values of this ratio
are reported in the second line of Table 2. It is
possible to notice that, as much as the structure
is “simple” (following the definition previously
introduced), the ratio increases. The effects of
column removal in the case of purely vertically
loaded structure (H/V = 0.00), the deforma-
tion work is more than 17 times greater. Similar
results are given in case of removal of column
JG, see the first line of Table 2. In this case, the
increments of deformation work are greater for
the structures which are “simple” and snaller for
the complex ones.

Table 2: Ratio between the deformation work after and
before column removal

Removed H/V
element 1.00 0.50 0.10 0.00

JG 1.39 1.16 11.21 44.37
JH 1.63 2.10 8.44 17.27

mean 1.51 1.63 9.82 30.82

The average value of the ratio between the
deformation work after and before the removal
is then computed, see the bottom line of Table 2.
The trend of the mean values can be compared
with the value of the NSCI: as much as the
complexity index decreases, the ratio tends to
increase. This aspect has to be analyzed in rela-
tion to the importance the removed element has
in the original structure. Since in case of purely
vertically loaded structures, the columns play
the fundamental role in the transfer of loads
from the elevation to the foundation, any beam
removal would not cause substantial changes in
the behavior of the structure (in other words
the deformation work does not increase signifi-
cantly).

As a simple explanation of the results found
in the numerical simulations, consider the ef-
fects of the removal of element JG in the cases
H/V = 1.00 and 0.50. In the first situation, the
ratio between the deformation work after and

before the removal is 1.39, in the second case
it is 1.16. This result may be in contrast with
the fact that as much as the complexity reduces
the ratio increases. In order to explain the re-
sult, and to stress the efficacy of the approach,
consider that element JG is part of the funda-
mental structure which has highest performance
ratio, ψ, for the case H/V = 1.00. On the con-
trary, it is not an element of the fundamental
structures with the highest ψ-value in the case
H/V = 0.50. In our opinion, this aspect ex-
plains the fact that the removal of elements that
are not part of the dominant load path causes
limited effects on the structure.

A final and important consideration focuses
on the fact that a structure can be either complex
or simple depending upon the loading scheme
acting on it. In this sense, element removal can
have irrelevant or disproportional consequences
in different cases.

5 CONCLUSIONS
A definition of structural complexity based

on information theory has been given. In or-
der to estimate the amount of complexity, the
scheme is divided into a set of statically de-
terminate structures, called fundamental struc-
tures, to which a weighting parameter is given.
Differently from previous approaches, the de-
formation work has been herein considered as
the parameter giving the amount of importance
of a fundamental structure. The information
content of the structure, i.e. the capacity of the
scheme to be described with the lower amount
of fundamental structures, is used as a measure
of structural complexity.

An example on a 15-elements frame showed
how the loads can affect the complexity of
structural bahavior, and the fact that the two
entities (stiffnesses distribution and external ac-
tions) are intimately linked in the evaluation of
the overall structural behavior.

Moreover, the links between complexity and
robustness have been investigated. The numeri-
cal experiments conduced on the example frame
consisted in the removal of two columns and in
the analysis of the variation of the internal de-
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formation work. As a first result, the variation
from undamaged to damaged frame increases as
much as the Normalized Structural Complexity
Index reduces. In parallel, if the removed ele-
ment is part of the fundamental structure with
highest performance ratio, the effects are more
relevant. These preliminary aspects have to be
taken into account in the design of structures in
which damage tolerance is required.
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A COMPUTATIONAL ASPECTS FOR
THE DEFINITION OF THE FUNDA-
MENTAL STRUCTURES

In order to compute the number of funda-
mental structures which can be found in a frame
structure, graph theoretical aspects are taken
into account. First, the structure, originally seen
as an ensemble of elements, with geometrical
and mechanical properties, linked together in
joints, with defined coordinates, is turned into
a set of vertices and edges, i.e. the associated
graph G. From a topological point of view, any
fundamental structure can be considered as a
spanning subgraph of G, [9].

The static determinacy of the fundamental
structures implies that any spanning subgraph
will be a rooted tree of G, i.e. a spanning
tree [8, 9]. Mathematically, the search of the
set of rooted tree of a graph coincides with the
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extraction of the set of all possible fundamen-
tal structures of the scheme, since the elements
are jointed at the nodes. This search is made
by means of algebraic graph theory. The num-
ber of spanning trees in a graphG is determined
by its Laplacian, which is found from the inci-
dence matrix of the graph [16]. As a lemma
of Kirchhoff’s Theorem, let n be the number of
vertices of G and let λ1, ..., λn be the ordered
eigenvalues of the Laplacian of G. The number
of spanning trees, s, is defined as

s =
1

n

n∏
i=2

λi. (9)

The Cyclomatic Number by Henderson and
Bickley [7] associates the First Betti Number
of the frame associated graph to the indetermi-
nacy number. For a graph with n vertices and e
edges, the Cyclomatic Number C is equal to

C = e− n+ 1 (10)

The degree of static indeterminacy (Γ) of the
frame is given by

Γ = 3× C = 3 (e− n+ 1) .

A graph can be turned into a tree by remov-
ing C edges. All the possible combinations
of e elements taken as groups of C elements
indicate the elements of the structural scheme
which have to be temporarily ignored. Clearly,
the number of combinations(

e

C

)
≥ s. (11)

This is due to the fact that the removals indi-
cated in the set include also the cases in which
parts of the scheme are totally separated. In this
sense, the Laplacian of the subgraph is written
and it is controlled if the the number of span-
ning trees of the graph associated to the funda-
mental structure is one, i.e.

1

n

n∏
j=2

λj = 1. (12)

If eqn. (12) is equal to 0, the subgraph is com-
posed by two or more components and cannot
be considered as a fundamental structure.
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