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Abstract. The degradation of quasi-brittle materials encompasses micro-cracks propagation, inter-
action and coalescence in order to form a macro-crack. These phenomena are located within the
Fracture Process Zone (FPZ). This paper aims at providing a further insight in the description of the
FPZ evolution with the help of statistical analysis of damage. The statistical analysis relies on the im-
plementation of Ripley’s functions, which have been developed in order to exhibit patterns in image
analyses. It is shown how a correlation length may be extracted from the Ripley’s function analy-
sis. Comparisons between experimental and numerical evolutions of extracted correlation lengths are
performed.

1 INTRODUCTION

Fracture of quasi-brittle materials such as
concrete or rocks is characterized by a macro
crack surrounded by a damage zone. At the tip
of the macro crack and ahead lies the so-called
Fracture Process Zone (FPZ) which is a region
of the material undergoing distributed damage.
The size of the FPZ in these heterogeneous ma-
terials is large enough to influence the mechan-
ical behaviour of the structure significantly. It
does not depend on the structural size, but it
is rather controlled by the local heterogeneities
in the material as well as by the geometry of
the specimen and the stress conditions. There-
fore, size effect, understood here as the depen-
dence of the dimensionless nominal strength of
a structure on its size, is observed (e.g. when
geometrically similar structures are compared,
see for example [13]).

Experimentally, this damage zone may be
characterized with the help of several direct and
indirect techniques. The localization of acoustic
events that can be detected during crack propa-
gation is one well established technique from
which the FPZ can be visualized and charac-
terized (e.g. [8], [19], [21], [14]). The acous-
tic events generated during micro-cracking are
recorded and post-processed in order to local-
ize them with the help of time-of-flight algo-
rithms. Hence, this technique provides infor-
mation on the entire crack propagation process
composed of distributed micro cracking and
further coalescence into a macro crack. Haidar
and co-workers [15] used a model mortar mate-
rial to observe the correlation among the width
of the FPZ measured by acoustic emissions
analysis, the parameters entering in the descrip-
tion of size effect, and the so-called internal
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length used in classical non-local constitutive
relations.

As far as modeling is concerned, macroscale
approaches (e.g. continuum-based models) and
mesoscale models (e.g. discrete or lattice-based
models) are available. The first one involves
a characteristic length, which controls the size
of the FPZ and is more suited for classical
structural analyses. In recent continuum-based
macroscale models (see e.g. [6, 12, 17] among
others), however, it has been pointed out that
this internal length is not constant during the
fracture process and also that it is influenced
by boundaries, which could be expected since
experimental works on fracture in concrete un-
derline the influence of boundaries on the frac-
ture energy [4]. The second approach relies on
a mesoscale description of the material and on
an explicit description of the heterogeneities in
the material. Therefore, this approach is better
suited in order to achieve an in-depth compre-
hension of the degradation processes involved
during fracture. As opposed to the continuum
macroscale approach, mesoscale models do not
introduce a characteristic length to drive the
failure process. The failure process is driven
by the larger heterogeneities, which are explic-
itly represented in the meso-model. At the scale
of a lattice element or a discrete element, soft-
ening is introduced as a local property. Note
that continuum-based models may also be used
at the mesoscale [18] by explicitly describing
the heterogeneities and then may be also suited
to achieve an in-depth comprehension of the
degradation processes involved during fracture.

Grassl and co-workers [9] demonstrated that
lattice-based mesoscale modeling was very ef-
ficient at describing not only size effect on the
peak load, but also the entire load deflection re-
sponse of bending beams. Four geometrically
similar sizes and three different notch lengths
were considered. The experimental data ob-
tained by Grégoire et al. [13] could be quite ac-
curately described, once the model parameters
at the mesoscale level had been calibrated for
one notch length. In addition, the authors used
this model for studying the incremental distri-

bution of the dissipated energy densities, and
they were able to track the evolution of the frac-
ture process zone in the structure, depending on
the size of the beams and on the boundary con-
ditions.

In addition, Grégoire and co-workers [14]
demonstrated that this lattice-based mesoscale
approach is also capable to capture the local
failure process realistically. Three point bend-
ing experiments coupled with acoustic emission
analyses provided global responses of the same
bending beams and local data in the form of the
distribution of the acoustic events and its evo-
lution in the course of fracture. The experi-
mental data obtained by Grégoire et al. [14], in
term of energy dissipation maps and histograms
of the distances between damage events, could
be quite accurately described with the same set
of model parameters. Particularly, the agree-
ment between the distributions of the relative
distances between damage events show that the
mesoscale model depicts the fracture process
zone and its evolution during failure in a very
consistent way compared to acoustic emission
data. Unfortunately, and contrary to the case of
direct tension, these histograms cannot be in-
terpreted easily because the effect of the strain
gradient in bending beams cannot be easily sep-
arated from the interaction between damage
events that may develop in the course of frac-
ture.

The purpose of this paper is to provide a fur-
ther insight in the description of failure with the
help of statistical analyses of damage. The sta-
tistical analysis relies on the implementation of
Ripley’s functions [22], which have been devel-
oped in order to exhibit patterns in image anal-
yses.

This paper is organized as follows: section 2
shows how Ripley’s function may be used in the
context of damage mechanics to extract a cor-
relation length between damage events. Sec-
tion 3 recalls briefly the lattice model used in
this paper. Section 4 presents the compari-
son between the evolution of extracted correla-
tion length during mesoscale numerical simula-
tions and experimental three point bending tests
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where damage events are localized by acoustic
emission techniques. Finally, numerical inves-
tigations of correlation length evolutions upon
failure are presented in section 5 for both direct
tension and three point bending specimens. Re-
sults show that the computed correlation length
is not constant during failure and significant
differences may be observed depending on the
type of loading applied to the same specimen.

2 RIPLEY’S FUNCTIONS APPLIED TO
DAMAGE MECHANICS

2.1 Ripley’s K function description
Ripley’s K function proposed in Ref. [22] is

a tool for analyzing completely mapped spatial
point process data, i.e. data on the locations
of events [3]. Particularly, it is used to char-
acterize the randomness in the spatial spread-
ing of point distributions. It is of high interest
in spatial ecology and has been used to charac-
terize the development and spreading of differ-
ent patterns, such as cell migration [22], tree [5]
and plant [23] dissemination or disease spread-
ing [2]. Recently, Tordesillas et al. [24] ex-
tended this pattern characterization method to
non-biological system to analyze diffuse gran-
ular failure. In this paper, we will use the Rip-
ley’s K function to characterize the interactions
and the correlations induced by damage local-
ization in quasibrittle fracture. The Ripley’s
K function may be adapted to study one, two
or three-dimensional spatial data, but most of
the developments have been performed in 2D,
which will also be the case hereafter. For a spa-
tial point distribution, the Ripley’s K function
may be defined as the ratio between the density
of events and the mean number of events within
a distance r of any chosen event in the distribu-
tion:

K(r) = 1
Nρ

∑
i∈P

∑
j∈P

eijH(i, j, r)

and H(i, j, r) =

{
1 if D(i, j) ≤ r
0 if D(i, j) > r

.
(1)

In Eq. 1, N is the total number of points, ρ is
the point density, P is the point distribution and
D(i, j) is the euclidean distance between two

points i and j. eij is an edge effect correction
factor, which is introduced to take into account
that, for points located near the boundary of the
study area, the real number of neighbors can be
underestimated because some of them may be
located outside of the study area or outside the
specimen [7]. In 2D, the general expression of
this edge effect correction factor is given by:

eij =
πD(i, j)

Πint(i, j)
≥ 1. (2)

In Eq. 2, D(i, j) is the euclidean distance be-
tween two points i and j and Πint(i, j) is the
inner perimeter corresponding to the part of the
perimeter of the circle, centered at i with a ra-
dius of D(i, j), which is included inside the
study area. This edge effect correction factor
depends on the shape of the study area. Typical
edge effect correction factor expressions for a
rectangular study area may be found in [7].

2.2 Randomness characterization
The Ripley’s K ran function of a perfect ran-

domly distributed set of points is simply given
by:

K ran(r) = πr2 . (3)

In order to characterize the randomness of
a distribution, the Ripley’s K function is usu-
ally compared to this reference functionK ran by
defining the residual function L as:

L(r) =

√
K(r)

π
−
√
K ran(r)

π
=

√
K(r)

π
− r .

(4)
Within this definition, and for a randomly dis-
tributed set of points, the residual function stays
equal to zero. Thus, plotting the residual L
for an arbitrary point distribution may charac-
terize the distance of this distribution to a per-
fect random one and then characterize the ran-
domness of the distribution (see [20] for illus-
trations). Applying this concept to a set of dam-
age points may lead to characterize how these
damage points localize upon failure and there-
fore characterize the correlations between these
damage points, which are related to the internal
length in a nonlocal continuum setting.
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2.3 Correlation length extraction
Figure 1 presents a distribution of 20 points

located in a unique disk of radius R0 = 10 mm
and the corresponding residual function L. The
position of the maximum of the residual func-
tion rmax ≈ 15.9 mm does not correspond di-
rectly to the disk radius since it depends also on
the height and the length of the analyze area.
However, the analytical expression of the resid-
ual function Ldisk of a distribution of events lo-
cated in a disk of radiusRmay be approximated
by equation 5. For a given residual function L
of a distribution located in a unique disk, equa-
tion 6 provides the expression of the optimum
radius R∗, which best fits the residual analyti-
cal function Ldisk. This has been done for the
distribution presented in Figure 1. One obtains
R∗ ≈ 9.57 mm, which corresponds to an esti-
mate of the disk radius with an error of less than
4.5% for this very coarse distribution.

Ldisk(r, R) =


√

S
πR2 (r − r2

4R
)− r for r ≤ 2R√

S
π
− r for r > 2R

(5)

R∗ =
1−

√
1− 2rmax

√
π
S

2
√

π
S

(6)

where S is the surface of the analysis box
(S = 0.1 × 0.1 m2 in Figure 1) and rmax is the
position of the maximum of the residual func-
tion.

For a given distribution of damage events
with no particular shape, we define the maxi-
mum rmax of the residual function L(r) as the
correlation length of the distribution. Thereby,
this correlation length may be extracted directly
from the evolution of the residual function.

Note that according to this definition, the ex-
tracted correlation length depends on the size of
the analysis area. This dependance is attenuated
for large analysis area (R∗ → rmax

2
when S →

+∞ in Eq. 6). Thereafter, all Ripley’s func-
tions are estimated for a sufficiently large anal-
ysis area of a given constant size 400×400 mm
and no edge effect correction is required.
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Figure 1: Distribution of events located in a disk
of radius R0 = 10 mm (a) and corresponding
residual function for 5 different analyses (b).
Reproduced from [20].

3 LATTICE MODEL DESCRIPTION

A 2D plane-stress lattice model is used to
characterize the correlations involved during
failure in quasi-brittle materials. Practically,
the lattice model is used to monitor an evolv-
ing population of damage events (a damage
event corresponds to a lattice element under-
going damage during a load step), which is
analyzed at each load step with the correlation
length extraction method presented in part 2.3
and based on Ripley function applied to dam-
age mechanics. This lattice model is based on
the numerical framework proposed by Grassl
and Jirasek [11]. It has been shown in previous
study that this mesoscale approach is capable
not only to provide consistent global responses
(e.g. Force v.s. CMOD responses) [9, 14] but
also to capture the local failure process realisti-
cally [14].

The lattice is made of beam elements and
idealizes the meso-structure of concrete as a set
of three different components: aggregates, ma-
trix and the interface between them. The fol-
lowing assumptions are used:
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(i) Aggregates are described as circular in-
clusions. Aggregates with a diameter φd

greater than a fixed diameter value φdmin
are described explicitly. Their size dis-
tribution follows the grading of the con-
crete mixture and their spatial location is
given by a random distribution defined by
the cumulative distribution function pro-
posed in Ref. [11]. Aggregates overlap-
ping is avoided.

(ii) Fine aggregates are not described. They
are included in the matrix which is an
equivalent homogeneous material (made
of cement paste and fine aggregates). Dis-
order due to the heterogeneity of the ma-
trix which contains small aggregates is
still kept, however, in the form of a cor-
related random distribution of mechanical
properties. The correlation length is in-
dependent from the fineness of the lattice
and therefore provides lattice element size
independent results [10].

(iii) The large aggregate are elastic. The ma-
trix material follows an isotropic - scalar -
damage model.

(iv) Each aggregate is surrounded by an inter-
face of thickness equal to one lattice ele-
ment length which is endowed with a spe-
cial constitutive relation. This interface is
meant to represent the Interfacial Transi-
tion Zone (ITZ) in concrete. Its constitu-
tive model is similar to that of the matrix,
with different constants since the ITZ is
usually weaker than the matrix.

Model constitutive equations are not recalled
here. The reader may refer to reference [9, 11,
14, 20] for further details.

4 MODEL VALIDATION BY EXPERIMEN-
TAL COMPARISONS OF CORRELATION
LENGTH EVOLUTIONS

Three-point bending tests were performed on
geometrically similar notched and unnotched

specimens made of the same concrete mate-
rial. The experimental results presented here-
after are obtained from a campaign already pre-
sented by Grégoire et al. [14]. This campaign
is similar to the one previously presented by
Grégoire et al. [13] and includes the localisa-
tion of acoustic events during fracture addition-
ally. The experimental procedure is briefly pre-
sented in this section. The reader may refer to
references [13, 14] for further details.

4.1 Experimental procedure: material,
specimen and test rig descriptions

The concrete formulation used here is based
on a ready-mix concrete mixture obtained from
Unibeton . The concrete mixture formulation
and detailed gradings of the sand, the aggre-
gates and the mix are given in [13]. After de-
molding, the specimens were stored under wa-
ter at 20°C. The characterization of their me-
chanical properties was made by compression
and splitting (Brazilian) tests according to Eu-
ropean standards (EN 12390-1-3-6). Mechani-
cal properties and mechanical responses of the
material are presented in [13, 14, 20]. The test-
ing rig used for the bending tests was a three-
point bending setup on a servo-hydraulic testing
machine (HB250, Zwick/Roell) (see figure 2.a
and figure 2.b).

Figure 2.c presents a sketch of the specimen
geometry and the different measurable quan-
tities. Three HN200 half-notched specimens
(D = 200 mm; a0 = 0.5D), three FN200
fifth-notched (D = 200 mm; a0 = 0.2D), two
UN200 unnotched (D = 200 mm; a0 = 0 mm)
and three UN100 unnotched (D = 100 mm;
a0 = 0 mm) have been tested. The thick-
ness was kept constant (50 mm). All tests were
CMOD controlled at an imposed velocity in or-
der to avoid post-peak unstable crack propaga-
tion. Specimen dimensions and experimental
conditions are detailed in [20].

4.2 Acoustic Emission measurements
During the tests, acoustic events were

recorded and localised. The AE system used
in this study comprised an eigth-channel MIS-
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a) c)b)

Force Displacement

Crack mouth
opening displacement

D

S = 2.5 D

L = 3.5 D

a0

Acoustic sensors

Figure 2: Photography of the servo-hydraulic testing machine (a), zoom on the test rig (b) and sketch
of the specimen geometry and measurable quantities (c). Reproduced from [14].

TRAS system, a general purpose interface bus
(PCI-DISP4) and a PC for data storage anal-
ysis. Four acoustic transducers (resonant fre-
quency of 150 kHz) were placed around the
expected location of the crack, on one side of
specimen. The AE event localisation program
relies on time of flight analysis and triangula-
tion. The criterion used is that waves gener-
ated must reach at least 3 sensors. Then, the
source location is determined by a 2D trian-
gulation algorithm which relies of AEs arrival
time and wave velocity. The details about AE
setting parameters are given in [1]. Transduc-
ers were installed so that a minimum distance
dmin = 1.25 cm to the location where the crack
could appear was respected in order to mini-
mize errors which may occur when events are
located near one sensor. Details on the trans-
ducers arrangement are given in [14].

The detected signals were then amplified
with a 40dB gain differential amplifier in a fre-
quency band from 20 to 120 kHz. In order to
limit the background noise, the signal detec-
tion threshold was set at a value of 35 dB. The
coupling between the transducer and the spec-
imen is important in order to achieve a good
accuracy of the localization of events. A thin
layer of silicone grease was used to guarantee
the correct transmission of acoustic signals be-
tween the beam and the transducer. The vali-
dation of both this coupling and the accuracy
of the acoustic events localisation followed the
European standard NF EN 1330. It consists in
verifying if the position of an on-surface signal

generated by the break of a short piece of pencil
lead is correctly determined by the triangulation
software. Thus, events were generated at sev-
eral locations on the surface of each specimen
and the results from the localisation software
were compared with the true location of each
event. A correct coupling is achieved when the
accuracy of localization of these events is of
the order of 4 mm. Maps of the distribution of
acoustic events for the different beam geome-
tries are presented in [14].

4.3 Numerical simulations: geometry,
model parameter and global mechan-
ical responses

Figures 3.a and 3.b present a schematic
drawing of the notched and unnotched beams
considered in the present study. The geometry
and applied loads correspond to the experiments
reported in Refs. [13, 14] and modeled numer-
ically in Refs. [9, 14]. Four different sizes of
geometrically similar specimens were consid-
ered, along with three notch lengths: a0 = 0
(UnNotched, so-called UN), a0 = 0.2D (Fifth-
Notched, so-called FN) and a0 = 0.5D (Half-
Notched, so-called HN). For a detailed presen-
tation of the experiments, see [13, 14].

The analyses were controlled by the crack
mouth opening displacement (CMOD), which
is the relative horizontal displacement of the
points A and B shown in Figures 3.a and 3.b.
For the notched specimens, the points were lo-
cated at the end of the notch. For the unnotched
specimen, the two points were apart a distance
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David Grégoire, Vincent Lefort and Gilles Pijaudier-Cabot

BA x

y

F

D

a0

D

Meso-scale region

0.5D 2.5D 0.5D

(a) Half-Notched beam
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(b) Unnotched beam

Figure 3: Geometries of three-point bending test for (a) notched and (b) unnotched beams. Repro-
duced from [20].

equal to the beam depth D, since the location
of the fracture process zone initiating from the
surface was indeterminate.

Same as in the experiments, the out-of-plane
thickness was kept constant for all sizes and all
geometries at b = 50 mm. The notch thickness
was fixed equal to zero for consistence with the
experimental procedure where the notch was
moulded using a thin metal plate of constant
thickness. The load and support reactions were
applied by means of 5 mm-wide metallic plates.

In order to limit the computation time, the
nonlinear mesoscale model is used in the mid-
dle part of each beam centered at mid-span
where damage is expected, as shown in Figures
3.a and 3.b. The remaining part of the beam
is discretized with elastic lattice elements. In
this region, the aggregates are not described ex-
plicitly. The mechanical response of this part of
the lattice corresponds to that of the equivalent
homogeneous material. The aggregate volume
fraction corresponds to the experimental data ,
with a cut off for small sizes. Fine aggregates
are not explicitly described. They are included
in the matrix which is an equivalent homoge-
neous material made of cement paste and fine
aggregates. Disorder due to the heterogeneity
of the matrix is considered in the form of a cor-
related random distribution of mechanical prop-
erties. The correlation length is equal to 1 mm.
Details may be found in [9].

The model parameters for the three compo-
nents are summarized in table 1. Such as in Ref.
[9], these values were chosen so that the global
model results in term of load-CMOD curves
for different beam sizes and boundary condi-

tions were in agreement with experimental re-
sults reported in [14]. However, not all param-
eters were varied independently of each other
to obtain this agreement. Instead, several con-
straints were applied, motivated by experimen-
tal and numerical results reported in the litera-
ture. Firstly, the ratio of the stiffnesses for ag-
gregate and matrix was kept constant and equal
to two. Furthermore, the tensile strength of ma-
trix was assumed to be twice of the strength
of the interfacial transition. These ratios are in
the range of the experimental results reported
in [16, 25]. Furthermore, the model parameters
for the elastic response outside the meso-scale
region were chosen so that the response repre-
sents the average elastic behaviour of the meso-
scale region.

Table 1: Model parameters.

E [GPa] ν ft [MPa] Gf [N/m]
Matrix 44 0.33 3.8 86

Interface 58.7 0.33 1.9 43
Aggregate 88 0.33 -

Mean 63 0.33 -

For each geometry, calculations were re-
peated with 10 different random fields of aggre-
gates and mechanical properties.

The experimental and numerical results in
term of Force vs. CMOD data are presented
in [20]. As already discussed in [14], the ex-
perimental datapoints are in good agreement
with the results obtained via the mesoscopic ap-
proach.
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4.4 Comparison in term of correlation
length evolutions

In this section, we aim at comparing the
experimental data and the numerical results in
term of evolutions of the correlation length ex-
tracted based on the analysis by Ripley’s func-
tions and the procedure presented in section 2.3.
To perform the comparison between the ex-
perimental and the numerical results, different
statements have to be considered:

• Damage event definition.
The procedure of correlation length ex-
traction presented in section 2.3 is based
on the analysis by Ripley’s function of a
given distribution of damage events. Ex-
perimentally, a damage event is associ-
ated to a material point producing acous-
tic emissions upon failure, which have
been detected and then localized by at
least three acoustic sensors during a load
step. Numerically, a damage event is as-
sociated to a lattice material point under-
going damage during a load step.

• Loading curve discretization.
A minimum number of damage events
has to be captured to perform the post-
processing. Numerically there is almost
no limitation because a lot of damage
events are acquired within a loading step.
Experimentally, the acoustic emission is
much more restrictive because only few
acoustic events may be acquired by the
technique, especially in the nonlinear pre-
peak regime. Therefore, the loading
curve discretization is determined to en-
sure to capture enough events experimen-
tally in order to achieve a statistically
representative post-processing. Since the
first goal of this section is to test the rele-
vance of the meso-model by comparing
the numerical results with experimental
ones, we adopt the same interval length,
which is driven by the experimental min-
imum. Numerical investigations on cor-
relation length evolutions upon failure

based on a finer loading curve discretiza-
tion are presented alone in part 5.

• Space discretization.
Numerically, the space discretization cor-
responds intrinsically to the lattice dis-
cretization. Experimentally, there is an
implicit space discretization due to the
acoustic sensor resolution and the acous-
tic emission localization technique reso-
lution. This resolution is of the order of
4 mm [14]. This means that two acous-
tic emissions produced at two different
material points separated by a distance
smaller than this resolution may not be
distinguished. This means also that all
the acoustic emissions produced in the
corresponding vicinity of a material point
are seen by the acoustic sensors as a
single acoustic emission with an acous-
tic energy corresponding to the addition
of all the individual acoustic energies.
Therefore the numerical and experimen-
tal data cannot be directly compared since
the Ripley’s function post-processing is
only based on the spatial repartition of a
given distribution of point. Experimen-
tally, an acoustic event will count for a
single data point in the Ripley’s function
analysis even if, locally, several mate-
rial points undergo damage and produce
acoustic emissions. This is overcome
by tacking into account the intensity of
the energy dissipated during each damage
event in the post-processing by Ripley’s
functions. Assuming that the acoustic en-
ergy recorded for each event is propor-
tional to the energy dissipated during the
corresponding damage event, it is possi-
ble to compare experimental and numeri-
cal results in term of dissipated energy:

– On one hand, the dissipated en-
ergy during damage is obtained nu-
merically from the mesoscale analy-
sis. Maps of dissipated energy have
been already computed in [9,11,14]
and we follow the same procedure.
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The domain to be analyzed is first
discretized with a square grid with a
cell-size d = 5 mm. Within each
cell, the energy dissipation due to
damage is computed for each lattice
element located in the cell. Then,
we sum this energy dissipation for
all lattice elements contained in the
cell. When a lattice element crosses
several cells, the energy is allocated
in proportion to the element length
within each cell.

– On the other hand, the maps of
the distribution of acoustic energy
within the same loading increments
are computed according to the same
discretization. Within an increment,
the energy of all the event con-
tained in the same cell is summed
up. Due to the localization res-
olution by acoustic emission tech-
nique, less acoustic events than nu-
merical events are detected. There-
fore, the size and the discretization
of the load increments are deter-
mined to ensure to capture enough
events experimentally in order to
achieve statistically representative
post-processing.

Finally, the experimental and numerical
energies dissipated within each cell are
converted proportionally into a number
of points, which are randomly spreaded
within the cell. Since the Ripley’s func-
tion post-processing does not depend on
the total number of points (see [20] for
details) , the post-processing does not de-
pend on this proportionality factor. Prac-
tically, the maximum value of the en-
ergy (numerical dissipated energy or ex-
perimental acoustic energy) is converted
into 200 points. After conversion, exper-
imental and numerical evolutions of ex-
tracted correlation length may be com-
pared. Note that after conversion, the
extracted correlation lengths are smaller

than the one extracted without any con-
version and they are not directly linked
to the fracture process zone size or to the
internal length in the sense of nonlocal
models because a large number of points
are artificially placed close to the macro-
crack path corresponding to high energy
events. This is acceptable in this section
where the first goal is to compare exper-
imental and numerical data. Numerical
investigations on correlation length evo-
lutions upon failure without any conver-
sion are presented alone in part 5.

Figure 4 presents the comparison between
experimental and numerical extracted correla-
tion length with intensity conversion. The cor-
relation length is extracted based on the anal-
ysis by Ripley’s functions as presented in sec-
tion 2.3. Even if an important scattering is ob-
served on the experimental data, we observe
a global good agreement between the experi-
mental and the numerical results. This means
that the numerical model and the Ripley’s post-
processing procedure may be used alone to in-
vestigate the evolution of the correlation length
upon failure.

5 NUMERICAL INVESTIGATIONS OF COR-
RELATION LENGTH EVOLUTIONS UPON
FAILURE

5.1 Influence of the loading type

5.1.1 Response in direct tension

In this subsection, the correlation length ex-
traction method is applied to a direct tension
test. We consider a concrete specimen present-
ing the same characteristics than the one studied
in section 4.1.
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Figure 4: Comparison between experimental and numerical extracted correlation length with intensity
conversion. Reproduced from [20].

(a)

BA

x

y

F
D

a0

D

Meso-scale region

1.5D 0.5D 1.5D

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.01  0.02  0.03  0.04  0.05  0.06

F
o

rc
e

 (
k
N

)

CMOD (mm)

Figure 5: (a) Geometry and (b) Force vs.
CMOD curves of the direct tension test (D =
100 m).

Figure 5 presents the tension test geometry
and the Force vs. CMOD curves. The speci-
men is pre-notched from the bottom face to half
the depth and the test is CMOD controlled. At
each CMOD step, the distribution of incremen-
tal damage events is plotted (see figure 6.a) and
the corresponding Ripley’s residual function is

estimated. The correlation length is then ex-
tracted based on the analysis by Ripley’s func-
tions as presented in section 2.3.

This correlation length is directly related to
the size of the damage zone and therefore to
the internal length in a nonlocal continuum set-
ting. The evolution of the extracted correlation
length is presented in figure 6.b. In concrete,
damage develops at the interface between ag-
gregates and mortar. At the beginning of the
test, damage develops and spreads all over the
specimen and then the correlation length grows
and it would reach eventually the size of the
box. However, at CMOD≈ 0.01 mm, dam-
age starts to localize within a fracture process
zone surrounding the pre-notch tip and the cor-
relation length reaches a plateau. Later on, and
as the fracture process zone develops to form
a macro-crack, the correlation length decreases.
When the macro-crack is fully developed, sur-
rounded by the fracture process zone, the cor-
relation length reaches a new plateau at a value
corresponding to four times the larger aggregate
size (≈ 10 mm).
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Figure 6: Distribution of damage events for a
direct tension test (a) and corresponding corre-
lation length evolution (b).

5.1.2 Response in bending

In this subsection, the correlation length ex-
traction method is applied to the three point
bending beams presented in section 4.1. We
compare here the response of long notch and
unnotched specimens with a depth of 100 mm.
Geometries are presented in figure 3. The same
post processing method is applied: the test are
CMOD controlled and at each CMOD step, the
distribution of incremental damage events is
plotted (see figure 7.a-b) and the corresponding
Ripley’s residual function is estimated. The cor-
relation length is extracted based on the anal-
ysis by Ripley’s functions as presented in sec-
tion 2.3. The evolution of the extracted correla-
tion length is presented in figure 7.c.

(a)

 0.14 0.16 0.18  0.2  0.22

X (m)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Y
 (

m
)

(b)

 0.14 0.16 0.18  0.2  0.22

X (m)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Y
 (

m
)

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.02  0.04  0.06  0.08  0.1
C

o
rr

e
la

ti
o
n
 l
e
n
g
th

 (
m

)
CMOD (mm)

Unnotched (d=100mm)
Half−notched (d=100mm)

Figure 7: Responses in bending: (a) Damage
distribution at peak for the long notch speci-
men; (b) Damage distribution at peak for the
unnotched specimen; (c) Evolution of the ex-
tracted correlation lengths for both specimen.

For the notched specimen, the evolution of
damage is similar to what has been observed in
direct tension. The pre-notch trigs the damage
localization and the correlation length grows
to reach a plateau at a value corresponding
to four/five times the larger aggregate size (≈
10 mm). However, during the initiation of fail-
ure, damage does not spread over the whole
specimen because of the bending strain gradi-
ent. That is the reason why only a growing
phase is observed before the plateau. For the
unnotched specimen, the damage evolution is
totally different. Since there is no pre-notch,
the damage localization is not trigged and dam-
age spreads on the bottom surface of the speci-
men. Therefore, the correlation length is equal
to the analysis box size at the beginning at dam-
age initiation. At some point, a macro-crack
will emerges from the bottom face and prop-
agates surrounded by a fracture process zone.
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The correlation length is decreasing from the
analysis box size to reach the same plateau ob-
served for a notched specimen at a value corre-
sponding to four/five times the larger aggregate
size (≈ 10 mm).

6 CONCLUDING REMARKS

We have presented a detailed analysis based
on Ripley’s functions of the cracking process at
the mesoscale of concrete specimen, both nu-
merically and experimentally. The computa-
tional model is a lattice-based approach which
already proved to be able to capture size ef-
fect test data for notched and unnotched bend-
ing beams and the force v.s. CMOD response as
well (see [9]). Moreover, comparison with ex-
periments coupled with acoustic emission anal-
yses proved also that the mesoscale model is
representative of the local process of quasi-
brittle failure in term of dissipative energy maps
and histograms of relative distances between
damage events (see [14]).

The following concluding statements can be
made:

• The post processing with Ripley’s func-
tion provides indicators of the random-
ness of a distribution of events.

• It has been shown that a correlation
length, which may possibly be linked to
an internal length in the sense of non lo-
cal models, may be extracted from the
Ripley’s function analyse applied to dam-
age mechanics. However, the exact corre-
spondance between the extracted correla-
tion length and a nonlocal model internal
length remains to be derived.

• The evolutions of this extracted correla-
tion length upon failure have been pre-
sented. Comparisons between numerical
data based on mesoscale lattice model-
ing and experimental data where damage
events were localized by acoustic emis-
sion techniques were performed. Even if
an important scattering is observed on the
experimental data, we observed a global

good agreement between the experimen-
tal and the numerical results. This means
that the numerical model and the Ripley’s
post-processing procedure may be used
alone to investigate the evolution of the
correlation length upon failure.

• Numerical investigations have been per-
formed on both direct tension and three
point bending specimens. The results
show that the extracted correlation length
is not constant during failure and signifi-
cant differences may be observed depend-
ing on the type of loading applied to the
same specimen.

This conclusion opens the path for further anal-
yses of the fracture process, solely based on
numerical analyses with the mesoscale model.
From theses studies, a better understanding of
the correlations between damage events, that
should result into non local continuum model-
ing at the macroscale, is expected.
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David Grégoire, Vincent Lefort and Gilles Pijaudier-Cabot

[4] Kai Duan, Xiaozhi Hu, and F.H.
Wittmann. Boundary effect on con-
crete fracture and non-constant fracture
energy distribution. Engineering Fracture
Mechanics, 70(16):2257 – 2268, 2003.
¡ce:title¿Size-scale effects¡/ce:title¿.

[5] Richard P Duncan. Flood Disturbance and
the Coexistence of Species in a Lowland
Podocarp Forest, South Westland, New
Zealand Author(s):. Journal of Ecology,
81(3):403–416, 1993.

[6] Cédric Giry, Frédéric Dufour, and Jacky
Mazars. Stress-based nonlocal dam-
age model. International Journal of
Solids and Structures, 48(25-26):3431–
3443, 2011.

[7] François Goreaud and Raphaël Pélissier.
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